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Abstract

The  daunting  and  challenging  tasks  of  specifying  the  optimal  network  architecture  and  its

parameters are still a major area of research in the field of Machine Learning (ML) till date.

These tasks though determine the success of building and training an effective and accurate

model,  are yet to be considered on a deep network having three hidden layers with varying

optimized parameters to the best of our knowledge. This is due to expert’s opinion that it  is

practically difficult to determine a good Multilayer Perceptron (MLP) topology with more than

two or three hidden layers without considering the number of samples and complexity of the

classification to be learnt. In this study, a novel approach that combines an evolutionary genetic

algorithm and an optimization algorithm and a supervised deep neural network (Deep-NN) using

alternative activation functions with the view of modeling the prediction for the admission of

prospective  university  students.  The  genetic  algorithm  is  used  to  select  optimal  network

parameters for the Deep-NN. Thus, this study presents a novel methodology that is effective,

automatic and less human-dependent in finding optimal solution to diverse binary classification

benchmarks. The model is trained, validated and tested using various performance metrics to

measure the generalization ability and its performance.

1 Introduction



The adaptive mechanism that gives computer the ability to learn by examples, by analogy, and from experience is

referred to as Machine Learning (ML) (Negnevitsky, 2005).  The most popular  approaches to ML are Artificial

Neural Network (ANN) and Evolutionary Algorithm (EA). ANNs are referred to as universal approximators (Svozil

et al., (1997) and Qin and Tang, (2009)) with similar principle but different types and structures used to solve variety

of complex problems still  with limitations.  The most commonly and heavily used ANN is the MLP (En  et  al.,

(2008), Karsoliya, (2012), Kokko, (2013), Abdalla et al., (2014), Sewsynker-Sukai et al., (2017), and Geron, (2019).

One major evolutionary algorithm used is the population based genetic algorithm (GA) (Goldberg, 1989). Some of

the  non-trivial  limitations  are  the  optimization  of  architectural  design  and  model  parameters.  Although,  these

parameters  are  decided  by  trial-and-error:  however  there  is  still  the  need  to  reduce  complexity  and  human

dependency in determining best designed model as an ongoing research (Abdalla  et al., 2014). The daunting and

challenging tasks of specifying the optimal network architecture and its parameters are still a major area of research

in the field of Machine Learning (ML) till date (Igodan, 2019 unpublished). In literature, the time consuming error-

and-trial rule-of-thumb method is used for determining the number of hidden units (Ferentinos, (2005) and Panchal

et  al.,  (2011)).  However,  in  some  literature,  optimization  process  still  partially  automated,  results  in  several

problems affecting  the  generalization  ability  (Ferentinos,  (2005),  Guler,  (2005),  Panchal  et  al.,(2011),  Batchis,

(2013), Abdalla et al.,(2014), and Sewsynker-Sukaiet al.,(2017)), and the obvious scarcity of automated alternative

procedures for optimal selection of topologies which  is assumed by trial-by-error or heuristic procedures (Fisher

and  Leung,  (1998),  and  Sewsynker-Sukaiet  al.,(2017))  are  commonplace  in  most  literature  to  the  best  of  our

knowledge. This is because of the problems of deception and multimodality in the search space of the network

architectures which are usually pre-defined (Ferentinos, 2005) by trial and error approach. An MLP, a model, with

no known guidelines for its structures, can approximate any arbitrary function (Karsoliya, (2012), Abdalla  et al.,

2014, Kokko, (2013), and Sewsynker-Sukai et al., (2017)). MLP’s with two or more hidden layers are more efficient

in  approximating  any  input/output  map  (Sivanandam  et  al., (2014)  and  are  regarded  as  deep  neural  network.

However, it is practically difficult to determine a good network topology just from the number of inputs and outputs

as  it  depends  critically  on  the  number  of  training  samples  and  complexity  of  the  classification  to  be  learnt

(Karsoliya,  2012).  The number of hidden layers is  the trade-off between smoothness  and accuracy. As a small

number of hidden layers increase the smoothness of approximation, a greater number of hidden layers increase the

accuracy of approximation (Kokko, 2013). This is because there are problems with one input and one output that

require millions of hidden units, and problems with a million inputs and a million outputs that require only one

hidden unit, or none at all (Karsoliya, 2012). One major evolutionary algorithms used to address these problems is

the population-based Genetic Algorithm (GA). According to Goldberg (1989) genetic algorithms are population-

based and search algorithms based on the mechanics of natural selection and natural genetics. GAs combine survival

of  the  fittest  among string structures  with a  structured yet  randomized  information exchange to  form a  search

algorithm with some of the innovative flair of human search. 

In  this  paper,  an  evolutionary  genetic  algorithm based  deep  neural  network  (E-Deep-NN) is  proposed  for  the

prediction of prospective student’s admission into the University of Benin. The model evolves three (3) hidden

layers and the number of neurons employed to achieve high accuracy. By taking suitable number of hidden layers



and the number of neurons in each hidden layer, better results are achieved in less training time; and in increasing

the number of hidden layers up to three (3) layers, accuracy can be achieved up to great extent if accuracy is the

main criteria for designing a neural network. The evolution of the hidden layers in this study will help in the trade-

off between accuracy and time complexity as the layers and neurons are evolved using the GA. The evolved number

of neurons of the architecture is achieved from the proposed heuristic using (2∗n+1)   as suggested in Kokko,

(2013) and Sivanandam et al,  (2014) and based on the number of features and instances of the datasets adopted,

where n  is number of input values.  This study intends to combine the advantages of DNN and GA to address

some  of  these  problems,  as  they  are  considered  the  most  reliable  and  promising  computational  intelligence

techniques (Chiroma et al., 2017).

2. Literature Review

In the resent years,  many Genetic Algorithm (GA) based evolution model has been proposed and presented for

solving  varieties  of  problems  ranging  from  regression  problems,  binary  classification  problems  to  multiclass

classification problems in building an evolving one hidden layer or two hidden layer networks with varying numbers

of hidden neurons (units) per layer. However, only a few literatures have implemented their works on a three hidden

layers (deep networks) with similar regularization parameters. According to Geron (2019) for many problems using

a Multilayer Perceptron (MLP) with single hidden layer can provide a reasonable result even for the most complex

functions provided it has enough neurons. This convinced researchers that there is no need to investigate any deep

neural networks. In Brownlee, (2017) deep learning refers to having many hidden layers in the neural network. They

are deep because they would have been unimaginably slow to train historically, but may take seconds or minutes to

train using modern techniques and hardware. However, the fact that deep networks have a much higher parameters

efficiency than shallow ones are overloaded: they can model complex functions using exponentially fewer neurons

than shallow nets, allowing them to reach much better performance with the same amount of training data (Geron,

2019). The large number of applications of the genetic algorithm for the artificial neural networks is exposed in any

of these folds. The GA can either be used as a means to either learn Artificial Neural Networks (ANNs) connection

weights  that  are coded in a  genetic  string as  binary or  real  numbers  or  evolve and select  the architecture and

parameters together or independently from the evolution of weights. Another means is to combine both methods

using GA. The encoding methods could either be the strong specification scheme (or direct encoding scheme) where

a network’s architecture is explicitly encoded or a weak specification scheme (or indirect scheme) where the exact

connectivity pattern is not explicitly represented instead it is computed in the basis of the information encoded in the

string by a suitable developmental rule (Arifovic and Gencay, 2001) previous studies related to this topic have been

performed.

In Abdalla et al., (2014) a new methodology for optimizing ANN parameters is developed. The objective is to design

an ANN using GA direct encoding specification scheme that is less human dependence with high performance. The

study achieves an acceptable degree of success with a total of 26 bits chromosome. Thomas et al., (2015) developed

a novel  system called Heurix to  predict  the optimal  number of hidden nodes configured to  favour speed (low

complexity) accuracy, or a balance between the two. A single hidden layer was adopted in the work. The system



developed  produced  high  performance  compared  to  the  exhaustive  search  (ES).  Nienhold,  (2005)  presented  a

modified genetic algorithm employed to optimize the Feedforward Neural Network (FNN) on an EEG dataset. A

single hidden layer with randomly selected number between 3 and 25 using the Nguyen-Widrow learning algorithm

is adopted in the study. The study showed optimal performance was achieved. In Ferentinos, (2005) presented two

neural networks with one and two hidden layers respectively encoded using an indirect specification. The numbers

of units in the hidden layers were obtained using GA. The study shows the influence of the variation of the GA

parameters is not significant compared to the network parameters. Senhaji  et al., (2017) proposes a new multi-

objective training model with constraints to satisfy two objectives: the learning objectives and number of weights

and  neurons  optimization.  The  model  provides  balance  between  the  MLP  and  the  complexity  to  get  good

generalization using an evolutionary approach known as the Non-Dominated Sorting Genetic Algorithm (NSGA II).

Pater, (2016) presented an optimized model for  crude distillation process.  In  the study, the optimization of  the

weights and network structure showed great potential in the crude oil refinery and in general model prediction for

global optimization problem. Taskiran  et al., (2015) presented an optimized BP-Learning algorithm and an MLP

structure using three different heuristics optimization algorithms: ABC, GA and SA. Sagar and Chalam, (2011)

presented an optimized fixed FNN architecture using evolutionary algorithm to find a near optimal set of connection

weights.  The  proposed  EAANN approach  gave  a  zero  mean  squared  error  than  the  gradient  descent  method.

Plagianakos  et al. (2005) proposes an evolutionary strategy based MLPs with pure threshold activation functions.

The model provides an interesting alternative class of neural networks, as it requires significantly less amount of

memory for storage of weights and uncomplicated digital arithmetic operations when compared to networks with

real  weights and non-linear  (sigmoid) activation functions.  The results showed great  promises.  Rao and Gupta,

(2014) developed a new method to design pattern detection using the combination of genetic algorithm and MLP

networks.  The study shows great  significance to  the re-engineering process  designer. Hassan and Jasim (2010)

applied GA on ANN for pattern recognition. The results obtained revealed a great deal of improvement than the

trial-and-error approach with 96% accuracy. Batchis, (2013) presented a genetic algorithm based evolutionary ANN

with a fixed architecture and connection weights. The study showed that the EANN approach leads to a promising

prospect than the traditional ANN method. Castillo et al., (2000b) presented the application of a GA-Prop based BP-

MLP model to solve function approximation problems. In the study, the Evolutionary Algorithm (EA) selects the

initial weights and learning rate, and changes the number of neurons in the hidden layers. In Idrissi et al., (2016) a

multi-objective mathematical formulation comprising of a GA and BP algorithm is presented in determining the

optimal number of hidden layers, its neurons and weight values. The study demonstrates the effectiveness of the

proposed model. Zhou and Li, (2004) adopted a GA approach to decide the optimal MLP structure. In the study, the

number of nodes in each hidden layers were obtained dynamically with the synaptic connecting weights. Results

show that  top  performance  can  be  obtained  by  MLP with  simpler  modal  structure.  Fakharudin  et  al., (2013)

combined GA and ANN to optimize the production of biogas process. In the study, the evolutionary neural network

is implemented to eliminate the need to determine the number of hidden nodes and evolve the best structures and

initial weights. The results showed low error and increased accuracy by 0.44% in the biogas yield. Balochion et al.,

(2013) optimized the MLP classifier using GA for the classification of audio to speech and music. The classifier



model adopted the wavelet transform model for the selection of features and showed improvement accuracy of

96.49%. In Kumari and Kumar (2015) a multilayer perceptron neural network optimization using GA to classify

ECG arrhythmia is presented. In the study, the learning rate and momentum term were optimized to improve the

classifier model.  Results show high classification accuracy; average precision and average recall  of  96.93% an

d96.92% respectively. Ganatra  et al., (2011) proposed a hybrid system for weight optimization in BP-ANN using

GA to improve performance of the classifier. The study shows the merits of combining BP and ANN. Ettaouil et al.,

(2015) presented an optimized architecture MLP based model to obtain an optimized number of hidden layers and

units  depending on the dataset.  Ludermir  et  al., (2006) presents  a  methodology for  the  neural  network global

optimization to simultaneously optimize the MLP weights and architectures to generate few connections with high

classification performance for any datasets. The approach combines the SA, TS and BP training algorithms and

showed improvement in accuracy. Alejandro and Andres (2011) proposes an evolutionary algorithm based MLP

model using GA and Binary PSO to improve the predictive power of a credit risk score card. Results obtained shows

that  both  methods  outperform  the  logistic  regression  and  default  neural  networks  in  terms  of  predictability.

However, the BPSO prove to be less time consuming than the BPS. In Aghazadeh and Gharehchopogh, (2017) the

optimization of the MLP using genetic algorithm is presented. The study provides a hybrid approach to estimate the

cost of websites design by content management system (CMS). Guler et al., (2015) proposes an optimal MLP using

GA to search for optimal structure and training parameters for better prediction for lung sound. The study resulted in

the design of optimal network structure and improved reduction in the processing load and time. Jayaraj and Ramin,

(2016) propose the hybridization of MLP with GA to optimize the parameters of the model to build an optimal

model  selection method for  software  defect  prediction (SDP).  The model  shows improvement  in  classification

accuracy by 0.61%. Castillo et al., (2000a) propose a new hybrid approach of combining a single hidden layer MLP

with an evolutionary algorithm and BP algorithm. The experiment shows that the proposed model achieved better

results and obtained optimal MLP network with high classification accuracy than conventional procedures. Rahman

and Setu, (2005) implemented a collaborative approach for combining GA and ANN into a single system to find

optimal model  using MATLAB 7.0.12.  The study shows potential  and good performance.  Chow  et  al., (2001)

implemented a one-hidden layer  and two-hidden layer  FNN using LM algorithm for  chiller  system. The study

demonstrates the ability of the model to learn complex non-linear mapping and find global optimal solution to

problems. The result shows that the 2-hidden layer with 5-5-9-4 configurations produces better performance with a

MSE<0.01 than the one-hidden layer configuration. Carvolho  et al., (2010) proposed an evolutionary ANN in a

systematical  and  automatic  way  by  adopting  four  meta-heuristics:  generalized  external  optimization,  variable

neighbourhood search, SA and canonical  GA for  model selection. The approach evolves the number of hidden

layers, units in each hidden layer, the learning rate, momentum term and activation functions. The results show

better performance than human specialists. 

3. Multilayer Perceptron, Deep Neural Network and Backpropagation 

An MLP is composed of one input layer, one or more layers of Threshold Logic Units (TLUs), called hidden layers,

and one final layer of TLUs called the output layer. The layers close to the input layer are usually called the lower



layers, and the ones close to the outputs are usually called the upper layers. Every layer except the output layer

includes a bias neuron and is fully connected to the next layer. When an ANN contains a deep stack of hidden layers,

it is called a Deep Neural Network (DNN). The field of Deep Learning studies DNNs, and more generally models

containing deep stacks of computations. Even though Deep Networks have much higher parameter efficiency than

shallow ones, they can model complex functions using exponentially fewer neurons than shallow nets, allowing

them to reach much better performance with the same amount of training data (Geron, 2019). To train an MLP (or

DNN) the backpropagation training algorithm (or simply Gradient Descent) is used for automatic computation (i.e.

forward and backward passes through the network). In other words, it is a process of reducing the error function by

tweaking the connection weight and biases. This process is repeated until the network converges to the optimal

solution. The performance of neural network depends not only on problem and purpose of the network also on the

complexity of the input datasets. There are many performance measures that can be used like the error functions of

MSE, RMSE, SSE, and so on; the Receiver Operating Curve (ROC) and Confusion Matrix and their usage is not

unambiguous.  In  modeling  an  MLP or  DNN,  three  stage  operator  are  commonly  adopted  which  are  training,

validation and testing. The model is fit during training using training dataset, validated using the validated dataset

and evaluated using the testing datasets on how well the model generalizes on the unknown datasets. The low the

generalization error is the fitter the model.  Figure 1 depicts the network architecture for a deep NN.

Figure 1: Structural representation of  a Deep Neural Network with three hidden Layers

4. Genetic Algorithm

The combination of optimization techniques and general purpose optimization methods based on Darwin Theory of

Evolution that searches for optimal solutions of a complex objective function by simulation of the evolutionary

process is called Genetic Algorithm (GA) and it is applied in a variety of problem domains (Goldberg, 1989). The

GA makes use of variation operators: selection, crossover and mutation operators. The GA algorithm begins with

multiple solutions of a given problem being examined. According to Ferentinos,  (2005) the main aspect in the

evolutionary process is the way of representing the solution (phenotype) by encoding it into a specific genotype and
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grouped together to form chromosomes which makes up the population of the problem. A genotype is a sequence of

bits (0 or 1) with a specific constant length and each corresponds to a unique phenotype and this representation treats

the problem as a combinatorial one. A phenotype in this study consists of the Deep Neural Network topology, its

activation functions, the training algorithms, the initial weights and the training modes. The training modes indicate

the batch (offline), mini-batch and sequential (online) training modes. The chromosome structure is represented in

Figure 2.

Figure 2: Chromosome Structure

5. Methodology

This paper aim to address the problems in designing of a DNN when using the trial-and-error procedure by adopting

a methodology based on evolutionary GA method. The optimization involves the network parameters which include

the architecture, activation function, training algorithm, initial weights and training modes. The detail steps of the

proposed evolutionary genetic based artificial neural network is depicted in Figure 3.

Genotype (chromosomes) Phenotypes (chromosomes)



Figure 3: Proposed Model Process

5.1. Data Collection

The benchmark dataset used in this paper was collected from the admission office personnel of the University of

Benin.  The  historical  dataset  ranges  from  2015  to  2017  sessional  admission  periods.  However,  2000  records

comprising 61.75% (1235) admitted cases and 38.25% (765) non-admitted cases were selected and normalized in

this study. Also, the standard XOR dataset is used in this study for testing the model.

5.2. Preparations and scaling of the dataset

In this study, the following preprocessing steps  is  adopted purposely to  eliminate outliers,  inconsistencies,  and

incompleteness of data in order to make the data suitable for mining so as to achieve better accuracy (Tan, et al.,

(2006)  and Gorunescus, (2011)): Data Cleaning: this step involves physically preparing the data by intentionally

removing irrelevant data to reduce as much noise as possible so as to guarantee accuracy and validity of the data.

Data  Integration:  suspected  redundant  (repeated)  and  inconsistent  data  are  removed  from  the  dataset.

Normalization/Standardization:  according  to  Ashwood,  (2013)  and  Brownlee,  (2017)  machine  learning perform

better when the dataset fed into it are standardized between 0 and 1. The data are scaled so that the input series

would all  have same magnitudes  and due to  the way activation functions approximate (squash) the input  data

(Ashwood, 2013). Neural networks require the input to be scaled in a consistent way to the range between 0 and 1

called normalization (Brownlee, 2017). In this study, Microsoft Excel is used in the normalization of the dataset by

adopting the MIN-MAX model as represented in Equation 1.1. Data mining: After applying the previous steps, data

mining techniques (genetic optimization and neural network classification) were applied on the datasets to extract

desirable knowledge.

…1.1

where X '  refers to the normalized value, x refers to the observation value (original value), min1 and max1 are the

respective minimum and maximum values of all observations, and min2 and max2 refer to the desired minimum and

maximum of the new scaled series.

5.3. DNN Development Model

A deep neural network with three (3) hidden layers, an input and an output was built. The input has 6 input units

which represents the six features of the data sets. Since the problem is a binary classification problem, the output has

one output unit representing whether the output is admitted case or non-admitted case. The three hidden layers

comprise of varying number of units based on the resultant GA evolution and algorithm represented in Figure 4. The

second evolved model is used to predict the outcome of the XOR problem with two input units and one output unit.

5.4. DNN-GA Combination



The combination of DNN and GA technique shows the modeling and optimization processes of a DNN that can

model complex functions using exponentially fewer neurons with better performance.

5.4.1. GA encoding Scheme

In this work, the DNN design and training parameters were represented using the indirect encoding specification

scheme in encoding the chromosome into specific genotype. A genotype represents a sequence of bits with specific

constant length corresponding to a chromosome.

5.4.2 Bit-string representation 

In this study an indirect (Binary encoding scheme) representations is adopted. The scheme incorporates five tasks of

the DNN design and training parameters:

(i) The selection of the layers and its units

(ii) The selection of the training algorithms

(iii) The selection of the activation function types

(iv) The initialization of the initial weights

(v) The selection of the training modes

5.4.2.1 The network architecture encoding

The  various  sizes  of  the  hidden  neurons  are  evolved  using  GA as  depicted  in  Figure  4.  That  is,  using  the

mathematical formulation suggested by Sivanandam et al (2014), and Kokko, (2013) given as (2n+1), where n is the

number of features used to determine the number of neurons in the first hidden layer first before calculating for the

second and third layers where the arises. The total number of hidden neurons is formulated based on the size of the

instances and number of features, m (2number  of  features-1 - 1) from the datasets. The algorithm for implementing the

determination of the number of neurons in the hidden layers is shown in Figure 1.3. The binary entry of bit strings is

represented from 0-4 for the three hidden layers having a gene size of 5bits.

5.4.2.2 The minimization (training) algorithm encoding

The classical  and still  preferred training algorithms for neural  networks are still  the stochastic gradient descent

(Brownlee, 2017). In this study, four stochastic training algorithms are adopted for training the proposed model:

Levenberg-Marquardt,  conjugate gradient,  quasi-Newton,  and steepest  descent  algorithms.  They are represented

with a gene size of two in the fifth and sixth bits of the binary string (chromosome) representation. 

5.4.2.3 Activation (Transfer) Function encoding

The choice of activation function is strongly constrained by the type of problem that is being modeled. However, for

pattern recognition problems typically the Sigmoid functions: Log-Sigmoid or Tangent-Sigmoid is used (Hagan et

al., 2014). The non-linear activation function is critical for the power of neural network (Manavazhahan, 2017) and

has high aptitude to simulate extreme data (Dorofki, et al., 2012). In this study, two non-linear, Log-Sigmoid-based



activation functions are adopted which is represented in Equations 1.2 and 1.3 respectively. With a gene size of

three, the activation function occupies the seventh to the ninth bits string in the chromosome structure.

f ( x )=
1

1+e−x

…1.2

f ( x )=tanh ( x )=
2

1+e−2x
−1 …1.3

Figure 4: Algorithm for the determination of the number of neurons in the hidden layers

5.4.2.4 Weight Initialization encoding

Weights are often initialized to small random values, such as values in the range 0 to 0.3, although more complex

initialization schemes can be used. Like linear regression, larger weights indicate increased complexity and fragility

of the model (Brownlee, 2017). This is because large weights are disadvantageous for the neuron since they will lead

to a high output variance (Urban, 2017).  However in this study, due to the fact that there is no known mathematical

standard or range of weighted values for the weight initialization, five different weights ranges from the works of

Arifovic and Gencay (2001) and Kokko (2013) were adopted. With a gene size of three, the initial weight occupies

positions ten to twelve bits string in the chromosome structure.

5.4.2.5. Training modes encoding

The three different training modes are used in this study. It involves the on-line (or incremental), offline (or batch)

and min-batch modes. The last two binary strings represent the different types of training modes occupying the 13th-

14th-bit order in chromosome.

The summary of the chromosome is shown in Table 1.1

6.0 The Algorithm of the Proposed Model



The algorithm of the proposed system for DNN design and training parameterization consists of four main parts: the

‘Users level’,  the ‘genetic algorithm optimization’ part  consisting of  the encoding and decoding, and the DNN

‘training’ part. The first part deals with the human interfacing, while the other three parts which contain several sub-

sections; interacting with others to complete the procedure. The schematic representation of the algorithm is shown

in Figure 5. Each box in the Figure represents a separate function and the names of these functions are inscribed on

it. The interactions between functions are shown with the appropriate arrows. Explanation of the algorithm and the

symbols involved follows thus:

Initially, the  user  initializes  the  parameters  of  the  GA algorithm,  The  GA parameters  given  as  the  number  of

generations of the GA (Ng), the size of population of the AG (Ps) and finally the probabilities of the crossover (Pc)

and mutation (Pm) is shown in Table 1.2 An initial population of specific random strings (chromosomes), each of

which  represents  a  network  topology  and  other  set  of  training  parameters  is  generated  and  represented  as

(X initial ) . The five parts encoded are the training algorithm (algo), the network architecture (archt), the activation

function (actvfn), the initial weights (initwt), and training mode (trainm). This explicit information after decoding

goes to the ‘train’ function. At this stage, each network topology with the explicit training parameters is trained with

the appropriate  training algorithms.  The decoded genotype for  the  weight  determines  the weight’s range to  be

randomly selected from the optional weights (rgenWt).  While the learning rate  (η )  is  determined randomly

(rgenLr) within the range [0, 1],  the momentum  (α )  is deduced using  η+α ≈1  as suggested in Kokko

(2013). Also, the choice of selection, crossover, and mutation methods is randomly chosen at this stage. The mean

squared error (MSE) of each individual string after training is calculated and sent to the ‘fitness’ function where the

fitness of each string is calculated (fitnessVect). The fitness is simply the value that GA tries to maximize. Here, the

fitness  of  each  individual  string  is  given  by  the  formula  in  Equation  1.4.  

fitnes=
1

MSE+1
…1.4

 where MSE  is mean squared error for the network and the smaller its MSE  the closer a fitnessvalue to 1.

The selection process of the GA (function ‘Select’) selects the new group of strings based on fitness value, which

constitute  the  parents  of  the  next  generation  of  the  GA (X parent ) .  Each  string  is  assigned  a  probability  of

reproduction and is selected according to this probability. The probability is usually proportional to the fitness of

each string. These strings are then subjected to the evolutionary operators of crossover and mutation and Elitism,

after  which  the  final  population  is  formed
X

(¿¿new)
¿

.  This  process  repeats  until  the  maximum number  of

generation (Ng) is reached or convergence is achieved. After that, the best string, that is the string that gave the

maximum fitness (or, the minimum MSE), is returned to the user, together with its corresponding minimum (best

MSE) and some other  information useful  for statistical  analysis.  Conventionally, genetic  algorithms with better

individuals have higher fitness, corresponding to the minimum MSE of DNN adopted in this study. The GA will



terminate if any of the stopping conditions is met. The pseudocode of the evolutionary process is given in Figure 6.

The GA has stopped and the relevant statistical information obtained, the best fit chromosome is decoded and the

information representing the various network architecture and parameters are used to build the DNN for training,

validation and testing. During the training, the three stages of evaluating the DNN used are: training, validation and

testing. The training is aimed at determining the best  fit  model which is validated using the validation dataset.

Thereafter  the  testing  is  carried  out  to  determine  how well  the  model  chosen  generalizes.  By including  these

techniques in the system, the GA system is aimed at designing the evolutionary GA-based Deep Neural network that

can be applied on any binary classification problems towards achieving high performance model.

Figure 5: Schematic Representation of the Evolution Artificial Neural Network

Table 1.2: GA Parameters

Operators Methods Values
Population Size [50]
Max generation By Convergence

Selection Roulette Wheel Prob. 0.7
Crossover (Pc) 2-Points [0,1]
Mutation (Pm) Bitwise Flip [0.6,1]
Chrom. Size 15bit string (alleles)

Figure 6: Pseudocode for Evolutionary Process



7.0. Results and Discussion

In this paper, a new methodology that involves combining genetic algorithm and Deep Neural Network (GA-Deep-

NN) in determining the optimal network parameters has been developed. The GA-Deep-NN model has been tested

for the classification of students’ admission dataset of the University of Benin, Benin City, and the standard XOR

dataset against those obtained by ordinary ANNs and Deep-NN using the trial-and-error procedures. The training,

validation and testing dataset for the Deep-NN classification model part were feed into the evolutionary Genetic

Algorithm (EA) part. The GA parameters that were adopted to classify the results are given in Table 1.2.

7.1 GA-Deep-NN Model Predictive Results for the admission dataset

In using the proposed model for the prediction of admission dataset, the best solution found is given in the following

string: 

101100000101100

The string is interpreted as: a deep neural network of two hidden layers network with 13 neurons in the first layer

with sigmoid activation function and 9 neurons in the second layer with tangent activation function and sigmoid

activation  function  in  the  output  neuron,  batched  trained  with  Levenberg-Marquardt  back-propagation  training

algorithm that uses [-0.5,0.5] as the initial weight range. The solution gave a value of 0.00032 after 500 epochs

The second best solution found gave the following string:

110010000100110

The string is interpreted as: a deep neural network of three hidden layers network with 13 neurons in the first layer

with sigmoid activation function and 9 neurons in the second layer with sigmoid activation function, 3 neurons in

the third layer with hyperbolic tangent activation function and sigmoid activation function in the output neuron,

sequentially trained with Levenberg-Marquardt back-propagation training algorithm that uses [-0.125, 0.125] as the

initial weight range. The solution gave a value of 0.00049 after 800 epochs.

7.2. GA-Deep-NN Model Classification Result for the XOR dataset

The best solution found is represented in the following string:

010011011110000

The string is interpreted as: a single hidden layer neural network with 9 neurons in the hidden layer with hyperbolic

tangent activation function and sigmoid activation function in the output neuron, batched  trained conjugate gradient

back-propagation training algorithm that  uses  [-1.  1]  as  the  initial  weight  range.  The solution gave  a value  of

0.00018 after 300 epochs.

The second best solution found is represented in the string as:

011000100001000



The string is interpreted as: a single hidden layer neural network with 12 neurons in the hidden layer with sigmoid

activation function and sigmoid activation function in the output neuron, batched trained steepest descent back-

propagation training algorithm that uses [-0.3, 0.3] as the initial weight range. The solution gave a value of 0.00028

after 500 epochs.

8.0. Comparative Study 

The classification performance of the proposed GA-Deep-NN approach is compared to the existing ANN and Deep-

NN approaches and the statistical details are given in Table 1.3.

Table 1.3: Performance statistical analysis

Metrics GA-Deep-NN Deep-NN ANN
Accuracy 98.28% 97.05% 89.09%

A comparison of the results achieved by the proposed GA-Deep-NN approach against the ordinary ANN and Deep-

NN shows clearly that the proposed model shows clearly that the proposed model achieved a significant degree of

successes.  Some of  the ROC curves for the single hidden layer models showing the convergence rates for the

training and testing datasets are represented in Figures 6 and 7, while the error rate and the performance of the

model in terms of fitness function are depicted in Figures 8 and 9 respectively.

Figure 7: Convergence for Training dataset Figure 7: Convergence for Test dataset

Figure 8: Error rate Figure 9 Model fitness performance



9.0 Conclusion and Future Work

The determination of optimal Deep-NN parameters using Evolutionary genetic algorithm has been presented in this

study. The  purpose  of  this  study  is  to  design  a  Deep-NN with  satisfactory  performance  with  reduced  human

dependency. Two datasets have been collected, treated, analyzed, and normalized for machine learning. The GA has

been applied using indirect encoding representation scheme on the Deep-NN model parameters for the design and

training. R programming language have been used with other machine learning libraries to obtain the results which

shows  that  the  new  proposed  model  can  optimize  Deep-NN  parameters  precisely  and  effectively  for  better

classification accuracies for binary classification problems. The aim of this study is to obtain optimal number of

hidden layers, and number of hidden neurons and other training parameters like the activation functions, training

algorithms, best initial weights among others, and the training modes depending on the type of dataset used – in this

case, binary classification problems. This study shows that though the number of these layers is domain-specific, it

is still a challenging task to obtain the perfect number of hidden neurons for all problems in advance. As a future

direction of this study, the GA will  be applied to determine and study the impact of the search space on time

complexity, performance, and how the training time can be reduced considerately and still achieve high accuracies

for both the binary and multiclass classification problems. 
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