
Architecture Optimization Model for the Deep Neural Network

Kingsley Chiwuike Ukaoha Efosa Igodan
Department of Computer Science University of

Benin

Benin City, Nigeria.

Department of Computer Science

University of Benin

Benin City, Nigeria
kingsley.ukaoha@uniben.edu charles.igodan@uniben.edu

Abstract

The daunting and challenging tasks of specifying the optimal network architecture and its

parameters are still a major area of research in the field of Machine Learning (ML) till date.

These tasks though determine the success of building and training an effective and accurate

model, are yet to be considered on a deep network having three hidden layers with varying

optimized parameters to the best of our knowledge. This is due to expert’s opinion that it is

practically difficult to determine a good Multilayer Perceptron (MLP) topology with more than

two or three hidden layers without considering the number of samples and complexity of the

classification to be learnt. In this study, a novel approach that combines an evolutionary genetic

algorithm and an optimization algorithm and a supervised deep neural network (Deep-NN) using

alternative activation functions with the view of modeling the prediction for the admission of

prospective university students. The genetic algorithm is used to select optimal network

parameters for the Deep-NN. Thus, this study presents a novel methodology that is effective,

automatic and less human-dependent in finding optimal solution to diverse binary classification

benchmarks. The model is trained, validated and tested using various performance metrics to

measure the generalization ability and its performance.

1 Introduction

The adaptive mechanism that gives computer the ability to learn by examples, by analogy, and from experience is

referred to as Machine Learning (ML) (Negnevitsky, 2005). The most popular approaches to ML are Artificial

Neural Network (ANN) and Evolutionary Algorithm (EA). ANNs are referred to as universal approximators (Svozil

et al., (1997) and Qin and Tang, (2009)) with similar principle but different types and structures used to solve variety

of complex problems still with limitations. The most commonly and heavily used ANN is the MLP (En et al.,

(2008), Karsoliya, (2012), Kokko, (2013), Abdalla et al., (2014), Sewsynker-Sukai et al., (2017), and Geron, (2019).

One major evolutionary algorithm used is the population based genetic algorithm (GA) (Goldberg, 1989). Some of

the non-trivial limitations are the optimization of architectural design and model parameters. Although, these

parameters are decided by trial-and-error: however there is still the need to reduce complexity and human

dependency in determining best designed model as an ongoing research (Abdalla et al., 2014). The daunting and

challenging tasks of specifying the optimal network architecture and its parameters are still a major area of research

in the field of Machine Learning (ML) till date (Igodan, 2019 unpublished). In literature, the time consuming error-

and-trial rule-of-thumb method is used for determining the number of hidden units (Ferentinos, (2005) and Panchal

et al., (2011)). However, in some literature, optimization process still partially automated, results in several

problems affecting the generalization ability (Ferentinos, (2005), Guler, (2005), Panchal et al.,(2011), Batchis,

(2013), Abdalla et al.,(2014), and Sewsynker-Sukaiet al.,(2017)), and the obvious scarcity of automated alternative

procedures for optimal selection of topologies which is assumed by trial-by-error or heuristic procedures (Fisher

and Leung, (1998), and Sewsynker-Sukaiet al.,(2017)) are commonplace in most literature to the best of our

knowledge. This is because of the problems of deception and multimodality in the search space of the network

architectures which are usually pre-defined (Ferentinos, 2005) by trial and error approach. An MLP, a model, with

no known guidelines for its structures, can approximate any arbitrary function (Karsoliya, (2012), Abdalla et al.,

2014, Kokko, (2013), and Sewsynker-Sukai et al., (2017)). MLP’s with two or more hidden layers are more efficient

in approximating any input/output map (Sivanandam et al., (2014) and are regarded as deep neural network.

However, it is practically difficult to determine a good network topology just from the number of inputs and outputs

as it depends critically on the number of training samples and complexity of the classification to be learnt

(Karsoliya, 2012). The number of hidden layers is the trade-off between smoothness and accuracy. As a small

number of hidden layers increase the smoothness of approximation, a greater number of hidden layers increase the

accuracy of approximation (Kokko, 2013). This is because there are problems with one input and one output that

require millions of hidden units, and problems with a million inputs and a million outputs that require only one

hidden unit, or none at all (Karsoliya, 2012). One major evolutionary algorithms used to address these problems is

the population-based Genetic Algorithm (GA). According to Goldberg (1989) genetic algorithms are population-

based and search algorithms based on the mechanics of natural selection and natural genetics. GAs combine survival

of the fittest among string structures with a structured yet randomized information exchange to form a search

algorithm with some of the innovative flair of human search.

In this paper, an evolutionary genetic algorithm based deep neural network (E-Deep-NN) is proposed for the

prediction of prospective student’s admission into the University of Benin. The model evolves three (3) hidden

layers and the number of neurons employed to achieve high accuracy. By taking suitable number of hidden layers

and the number of neurons in each hidden layer, better results are achieved in less training time; and in increasing

the number of hidden layers up to three (3) layers, accuracy can be achieved up to great extent if accuracy is the

main criteria for designing a neural network. The evolution of the hidden layers in this study will help in the trade-

off between accuracy and time complexity as the layers and neurons are evolved using the GA. The evolved number

of neurons of the architecture is achieved from the proposed heuristic using (2∗n+1) as suggested in Kokko,

(2013) and Sivanandam et al, (2014) and based on the number of features and instances of the datasets adopted,

where n is number of input values. This study intends to combine the advantages of DNN and GA to address

some of these problems, as they are considered the most reliable and promising computational intelligence

techniques (Chiroma et al., 2017).

2. Literature Review

In the resent years, many Genetic Algorithm (GA) based evolution model has been proposed and presented for

solving varieties of problems ranging from regression problems, binary classification problems to multiclass

classification problems in building an evolving one hidden layer or two hidden layer networks with varying numbers

of hidden neurons (units) per layer. However, only a few literatures have implemented their works on a three hidden

layers (deep networks) with similar regularization parameters. According to Geron (2019) for many problems using

a Multilayer Perceptron (MLP) with single hidden layer can provide a reasonable result even for the most complex

functions provided it has enough neurons. This convinced researchers that there is no need to investigate any deep

neural networks. In Brownlee, (2017) deep learning refers to having many hidden layers in the neural network. They

are deep because they would have been unimaginably slow to train historically, but may take seconds or minutes to

train using modern techniques and hardware. However, the fact that deep networks have a much higher parameters

efficiency than shallow ones are overloaded: they can model complex functions using exponentially fewer neurons

than shallow nets, allowing them to reach much better performance with the same amount of training data (Geron,

2019). The large number of applications of the genetic algorithm for the artificial neural networks is exposed in any

of these folds. The GA can either be used as a means to either learn Artificial Neural Networks (ANNs) connection

weights that are coded in a genetic string as binary or real numbers or evolve and select the architecture and

parameters together or independently from the evolution of weights. Another means is to combine both methods

using GA. The encoding methods could either be the strong specification scheme (or direct encoding scheme) where

a network’s architecture is explicitly encoded or a weak specification scheme (or indirect scheme) where the exact

connectivity pattern is not explicitly represented instead it is computed in the basis of the information encoded in the

string by a suitable developmental rule (Arifovic and Gencay, 2001) previous studies related to this topic have been

performed.

In Abdalla et al., (2014) a new methodology for optimizing ANN parameters is developed. The objective is to design

an ANN using GA direct encoding specification scheme that is less human dependence with high performance. The

study achieves an acceptable degree of success with a total of 26 bits chromosome. Thomas et al., (2015) developed

a novel system called Heurix to predict the optimal number of hidden nodes configured to favour speed (low

complexity) accuracy, or a balance between the two. A single hidden layer was adopted in the work. The system

developed produced high performance compared to the exhaustive search (ES). Nienhold, (2005) presented a

modified genetic algorithm employed to optimize the Feedforward Neural Network (FNN) on an EEG dataset. A

single hidden layer with randomly selected number between 3 and 25 using the Nguyen-Widrow learning algorithm

is adopted in the study. The study showed optimal performance was achieved. In Ferentinos, (2005) presented two

neural networks with one and two hidden layers respectively encoded using an indirect specification. The numbers

of units in the hidden layers were obtained using GA. The study shows the influence of the variation of the GA

parameters is not significant compared to the network parameters. Senhaji et al., (2017) proposes a new multi-

objective training model with constraints to satisfy two objectives: the learning objectives and number of weights

and neurons optimization. The model provides balance between the MLP and the complexity to get good

generalization using an evolutionary approach known as the Non-Dominated Sorting Genetic Algorithm (NSGA II).

Pater, (2016) presented an optimized model for crude distillation process. In the study, the optimization of the

weights and network structure showed great potential in the crude oil refinery and in general model prediction for

global optimization problem. Taskiran et al., (2015) presented an optimized BP-Learning algorithm and an MLP

structure using three different heuristics optimization algorithms: ABC, GA and SA. Sagar and Chalam, (2011)

presented an optimized fixed FNN architecture using evolutionary algorithm to find a near optimal set of connection

weights. The proposed EAANN approach gave a zero mean squared error than the gradient descent method.

Plagianakos et al. (2005) proposes an evolutionary strategy based MLPs with pure threshold activation functions.

The model provides an interesting alternative class of neural networks, as it requires significantly less amount of

memory for storage of weights and uncomplicated digital arithmetic operations when compared to networks with

real weights and non-linear (sigmoid) activation functions. The results showed great promises. Rao and Gupta,

(2014) developed a new method to design pattern detection using the combination of genetic algorithm and MLP

networks. The study shows great significance to the re-engineering process designer. Hassan and Jasim (2010)

applied GA on ANN for pattern recognition. The results obtained revealed a great deal of improvement than the

trial-and-error approach with 96% accuracy. Batchis, (2013) presented a genetic algorithm based evolutionary ANN

with a fixed architecture and connection weights. The study showed that the EANN approach leads to a promising

prospect than the traditional ANN method. Castillo et al., (2000b) presented the application of a GA-Prop based BP-

MLP model to solve function approximation problems. In the study, the Evolutionary Algorithm (EA) selects the

initial weights and learning rate, and changes the number of neurons in the hidden layers. In Idrissi et al., (2016) a

multi-objective mathematical formulation comprising of a GA and BP algorithm is presented in determining the

optimal number of hidden layers, its neurons and weight values. The study demonstrates the effectiveness of the

proposed model. Zhou and Li, (2004) adopted a GA approach to decide the optimal MLP structure. In the study, the

number of nodes in each hidden layers were obtained dynamically with the synaptic connecting weights. Results

show that top performance can be obtained by MLP with simpler modal structure. Fakharudin et al., (2013)

combined GA and ANN to optimize the production of biogas process. In the study, the evolutionary neural network

is implemented to eliminate the need to determine the number of hidden nodes and evolve the best structures and

initial weights. The results showed low error and increased accuracy by 0.44% in the biogas yield. Balochion et al.,

(2013) optimized the MLP classifier using GA for the classification of audio to speech and music. The classifier

model adopted the wavelet transform model for the selection of features and showed improvement accuracy of

96.49%. In Kumari and Kumar (2015) a multilayer perceptron neural network optimization using GA to classify

ECG arrhythmia is presented. In the study, the learning rate and momentum term were optimized to improve the

classifier model. Results show high classification accuracy; average precision and average recall of 96.93% an

d96.92% respectively. Ganatra et al., (2011) proposed a hybrid system for weight optimization in BP-ANN using

GA to improve performance of the classifier. The study shows the merits of combining BP and ANN. Ettaouil et al.,

(2015) presented an optimized architecture MLP based model to obtain an optimized number of hidden layers and

units depending on the dataset. Ludermir et al., (2006) presents a methodology for the neural network global

optimization to simultaneously optimize the MLP weights and architectures to generate few connections with high

classification performance for any datasets. The approach combines the SA, TS and BP training algorithms and

showed improvement in accuracy. Alejandro and Andres (2011) proposes an evolutionary algorithm based MLP

model using GA and Binary PSO to improve the predictive power of a credit risk score card. Results obtained shows

that both methods outperform the logistic regression and default neural networks in terms of predictability.

However, the BPSO prove to be less time consuming than the BPS. In Aghazadeh and Gharehchopogh, (2017) the

optimization of the MLP using genetic algorithm is presented. The study provides a hybrid approach to estimate the

cost of websites design by content management system (CMS). Guler et al., (2015) proposes an optimal MLP using

GA to search for optimal structure and training parameters for better prediction for lung sound. The study resulted in

the design of optimal network structure and improved reduction in the processing load and time. Jayaraj and Ramin,

(2016) propose the hybridization of MLP with GA to optimize the parameters of the model to build an optimal

model selection method for software defect prediction (SDP). The model shows improvement in classification

accuracy by 0.61%. Castillo et al., (2000a) propose a new hybrid approach of combining a single hidden layer MLP

with an evolutionary algorithm and BP algorithm. The experiment shows that the proposed model achieved better

results and obtained optimal MLP network with high classification accuracy than conventional procedures. Rahman

and Setu, (2005) implemented a collaborative approach for combining GA and ANN into a single system to find

optimal model using MATLAB 7.0.12. The study shows potential and good performance. Chow et al., (2001)

implemented a one-hidden layer and two-hidden layer FNN using LM algorithm for chiller system. The study

demonstrates the ability of the model to learn complex non-linear mapping and find global optimal solution to

problems. The result shows that the 2-hidden layer with 5-5-9-4 configurations produces better performance with a

MSE<0.01 than the one-hidden layer configuration. Carvolho et al., (2010) proposed an evolutionary ANN in a

systematical and automatic way by adopting four meta-heuristics: generalized external optimization, variable

neighbourhood search, SA and canonical GA for model selection. The approach evolves the number of hidden

layers, units in each hidden layer, the learning rate, momentum term and activation functions. The results show

better performance than human specialists.

3. Multilayer Perceptron, Deep Neural Network and Backpropagation

An MLP is composed of one input layer, one or more layers of Threshold Logic Units (TLUs), called hidden layers,

and one final layer of TLUs called the output layer. The layers close to the input layer are usually called the lower

layers, and the ones close to the outputs are usually called the upper layers. Every layer except the output layer

includes a bias neuron and is fully connected to the next layer. When an ANN contains a deep stack of hidden layers,

it is called a Deep Neural Network (DNN). The field of Deep Learning studies DNNs, and more generally models

containing deep stacks of computations. Even though Deep Networks have much higher parameter efficiency than

shallow ones, they can model complex functions using exponentially fewer neurons than shallow nets, allowing

them to reach much better performance with the same amount of training data (Geron, 2019). To train an MLP (or

DNN) the backpropagation training algorithm (or simply Gradient Descent) is used for automatic computation (i.e.

forward and backward passes through the network). In other words, it is a process of reducing the error function by

tweaking the connection weight and biases. This process is repeated until the network converges to the optimal

solution. The performance of neural network depends not only on problem and purpose of the network also on the

complexity of the input datasets. There are many performance measures that can be used like the error functions of

MSE, RMSE, SSE, and so on; the Receiver Operating Curve (ROC) and Confusion Matrix and their usage is not

unambiguous. In modeling an MLP or DNN, three stage operator are commonly adopted which are training,

validation and testing. The model is fit during training using training dataset, validated using the validated dataset

and evaluated using the testing datasets on how well the model generalizes on the unknown datasets. The low the

generalization error is the fitter the model. Figure 1 depicts the network architecture for a deep NN.

Figure 1: Structural representation of a Deep Neural Network with three hidden Layers

4. Genetic Algorithm

The combination of optimization techniques and general purpose optimization methods based on Darwin Theory of

Evolution that searches for optimal solutions of a complex objective function by simulation of the evolutionary

process is called Genetic Algorithm (GA) and it is applied in a variety of problem domains (Goldberg, 1989). The

GA makes use of variation operators: selection, crossover and mutation operators. The GA algorithm begins with

multiple solutions of a given problem being examined. According to Ferentinos, (2005) the main aspect in the

evolutionary process is the way of representing the solution (phenotype) by encoding it into a specific genotype and

Initialize initial
population

Results
statisticsBest
Fitness & other
info

Sta
rt

Sta
rtNeural

Network for Best MSE
Value

Read data from
database

MLP
ANN

Initiate and assign
network paramet

ers

Train model and
computeMSE for each
network

For each genotype
encodedcreate
corresponding MLPnetwo

rk

Separate Training,
Validationand Test

datase

Call the Neural
Networkfor best MSE

values

Selection by Fitness
Values(1/MSE

+1)

Variation
Operations(Crossover and

Mutation)

Validate
Model

Test
Model

New generation of
Chromosomes by

Elitism

Evaluate and sort Fitness
function in Ascending

fashion

Stoppi
ng Criter
ia

me
t

?

End
ofpopulat

ion ?

Retu
rn Best MSE

Value

N
O

YE
S

YE
S

En
d

G
A

Outp
ut:Classification

Accuracy,Classification
Error,other Error

Measurements

N
O

grouped together to form chromosomes which makes up the population of the problem. A genotype is a sequence of

bits (0 or 1) with a specific constant length and each corresponds to a unique phenotype and this representation treats

the problem as a combinatorial one. A phenotype in this study consists of the Deep Neural Network topology, its

activation functions, the training algorithms, the initial weights and the training modes. The training modes indicate

the batch (offline), mini-batch and sequential (online) training modes. The chromosome structure is represented in

Figure 2.

Figure 2: Chromosome Structure

5. Methodology

This paper aim to address the problems in designing of a DNN when using the trial-and-error procedure by adopting

a methodology based on evolutionary GA method. The optimization involves the network parameters which include

the architecture, activation function, training algorithm, initial weights and training modes. The detail steps of the

proposed evolutionary genetic based artificial neural network is depicted in Figure 3.

Genotype (chromosomes) Phenotypes (chromosomes)

Figure 3: Proposed Model Process

5.1. Data Collection

The benchmark dataset used in this paper was collected from the admission office personnel of the University of

Benin. The historical dataset ranges from 2015 to 2017 sessional admission periods. However, 2000 records

comprising 61.75% (1235) admitted cases and 38.25% (765) non-admitted cases were selected and normalized in

this study. Also, the standard XOR dataset is used in this study for testing the model.

5.2. Preparations and scaling of the dataset

In this study, the following preprocessing steps is adopted purposely to eliminate outliers, inconsistencies, and

incompleteness of data in order to make the data suitable for mining so as to achieve better accuracy (Tan, et al.,

(2006) and Gorunescus, (2011)): Data Cleaning: this step involves physically preparing the data by intentionally

removing irrelevant data to reduce as much noise as possible so as to guarantee accuracy and validity of the data.

Data Integration: suspected redundant (repeated) and inconsistent data are removed from the dataset.

Normalization/Standardization: according to Ashwood, (2013) and Brownlee, (2017) machine learning perform

better when the dataset fed into it are standardized between 0 and 1. The data are scaled so that the input series

would all have same magnitudes and due to the way activation functions approximate (squash) the input data

(Ashwood, 2013). Neural networks require the input to be scaled in a consistent way to the range between 0 and 1

called normalization (Brownlee, 2017). In this study, Microsoft Excel is used in the normalization of the dataset by

adopting the MIN-MAX model as represented in Equation 1.1. Data mining: After applying the previous steps, data

mining techniques (genetic optimization and neural network classification) were applied on the datasets to extract

desirable knowledge.

…1.1

where X ' refers to the normalized value, x refers to the observation value (original value), min1 and max1 are the

respective minimum and maximum values of all observations, and min2 and max2 refer to the desired minimum and

maximum of the new scaled series.

5.3. DNN Development Model

A deep neural network with three (3) hidden layers, an input and an output was built. The input has 6 input units

which represents the six features of the data sets. Since the problem is a binary classification problem, the output has

one output unit representing whether the output is admitted case or non-admitted case. The three hidden layers

comprise of varying number of units based on the resultant GA evolution and algorithm represented in Figure 4. The

second evolved model is used to predict the outcome of the XOR problem with two input units and one output unit.

5.4. DNN-GA Combination

The combination of DNN and GA technique shows the modeling and optimization processes of a DNN that can

model complex functions using exponentially fewer neurons with better performance.

5.4.1. GA encoding Scheme

In this work, the DNN design and training parameters were represented using the indirect encoding specification

scheme in encoding the chromosome into specific genotype. A genotype represents a sequence of bits with specific

constant length corresponding to a chromosome.

5.4.2 Bit-string representation

In this study an indirect (Binary encoding scheme) representations is adopted. The scheme incorporates five tasks of

the DNN design and training parameters:

(i) The selection of the layers and its units

(ii) The selection of the training algorithms

(iii) The selection of the activation function types

(iv) The initialization of the initial weights

(v) The selection of the training modes

5.4.2.1 The network architecture encoding

The various sizes of the hidden neurons are evolved using GA as depicted in Figure 4. That is, using the

mathematical formulation suggested by Sivanandam et al (2014), and Kokko, (2013) given as (2n+1), where n is the

number of features used to determine the number of neurons in the first hidden layer first before calculating for the

second and third layers where the arises. The total number of hidden neurons is formulated based on the size of the

instances and number of features, m (2number of features-1 - 1) from the datasets. The algorithm for implementing the

determination of the number of neurons in the hidden layers is shown in Figure 1.3. The binary entry of bit strings is

represented from 0-4 for the three hidden layers having a gene size of 5bits.

5.4.2.2 The minimization (training) algorithm encoding

The classical and still preferred training algorithms for neural networks are still the stochastic gradient descent

(Brownlee, 2017). In this study, four stochastic training algorithms are adopted for training the proposed model:

Levenberg-Marquardt, conjugate gradient, quasi-Newton, and steepest descent algorithms. They are represented

with a gene size of two in the fifth and sixth bits of the binary string (chromosome) representation.

5.4.2.3 Activation (Transfer) Function encoding

The choice of activation function is strongly constrained by the type of problem that is being modeled. However, for

pattern recognition problems typically the Sigmoid functions: Log-Sigmoid or Tangent-Sigmoid is used (Hagan et

al., 2014). The non-linear activation function is critical for the power of neural network (Manavazhahan, 2017) and

has high aptitude to simulate extreme data (Dorofki, et al., 2012). In this study, two non-linear, Log-Sigmoid-based

activation functions are adopted which is represented in Equations 1.2 and 1.3 respectively. With a gene size of

three, the activation function occupies the seventh to the ninth bits string in the chromosome structure.

f (x)=
1

1+e−x

…1.2

f (x)=tanh (x)=
2

1+e−2x
−1 …1.3

Figure 4: Algorithm for the determination of the number of neurons in the hidden layers

5.4.2.4 Weight Initialization encoding

Weights are often initialized to small random values, such as values in the range 0 to 0.3, although more complex

initialization schemes can be used. Like linear regression, larger weights indicate increased complexity and fragility

of the model (Brownlee, 2017). This is because large weights are disadvantageous for the neuron since they will lead

to a high output variance (Urban, 2017). However in this study, due to the fact that there is no known mathematical

standard or range of weighted values for the weight initialization, five different weights ranges from the works of

Arifovic and Gencay (2001) and Kokko (2013) were adopted. With a gene size of three, the initial weight occupies

positions ten to twelve bits string in the chromosome structure.

5.4.2.5. Training modes encoding

The three different training modes are used in this study. It involves the on-line (or incremental), offline (or batch)

and min-batch modes. The last two binary strings represent the different types of training modes occupying the 13th-

14th-bit order in chromosome.

The summary of the chromosome is shown in Table 1.1

6.0 The Algorithm of the Proposed Model

The algorithm of the proposed system for DNN design and training parameterization consists of four main parts: the

‘Users level’, the ‘genetic algorithm optimization’ part consisting of the encoding and decoding, and the DNN

‘training’ part. The first part deals with the human interfacing, while the other three parts which contain several sub-

sections; interacting with others to complete the procedure. The schematic representation of the algorithm is shown

in Figure 5. Each box in the Figure represents a separate function and the names of these functions are inscribed on

it. The interactions between functions are shown with the appropriate arrows. Explanation of the algorithm and the

symbols involved follows thus:

Initially, the user initializes the parameters of the GA algorithm, The GA parameters given as the number of

generations of the GA (Ng), the size of population of the AG (Ps) and finally the probabilities of the crossover (Pc)

and mutation (Pm) is shown in Table 1.2 An initial population of specific random strings (chromosomes), each of

which represents a network topology and other set of training parameters is generated and represented as

(X initial) . The five parts encoded are the training algorithm (algo), the network architecture (archt), the activation

function (actvfn), the initial weights (initwt), and training mode (trainm). This explicit information after decoding

goes to the ‘train’ function. At this stage, each network topology with the explicit training parameters is trained with

the appropriate training algorithms. The decoded genotype for the weight determines the weight’s range to be

randomly selected from the optional weights (rgenWt). While the learning rate (η) is determined randomly

(rgenLr) within the range [0, 1], the momentum (α) is deduced using η+α ≈1 as suggested in Kokko

(2013). Also, the choice of selection, crossover, and mutation methods is randomly chosen at this stage. The mean

squared error (MSE) of each individual string after training is calculated and sent to the ‘fitness’ function where the

fitness of each string is calculated (fitnessVect). The fitness is simply the value that GA tries to maximize. Here, the

fitness of each individual string is given by the formula in Equation 1.4.

fitnes=
1

MSE+1
…1.4

 where MSE is mean squared error for the network and the smaller its MSE the closer a fitnessvalue to 1.

The selection process of the GA (function ‘Select’) selects the new group of strings based on fitness value, which

constitute the parents of the next generation of the GA (X parent) . Each string is assigned a probability of

reproduction and is selected according to this probability. The probability is usually proportional to the fitness of

each string. These strings are then subjected to the evolutionary operators of crossover and mutation and Elitism,

after which the final population is formed
X

(¿¿new)
¿

. This process repeats until the maximum number of

generation (Ng) is reached or convergence is achieved. After that, the best string, that is the string that gave the

maximum fitness (or, the minimum MSE), is returned to the user, together with its corresponding minimum (best

MSE) and some other information useful for statistical analysis. Conventionally, genetic algorithms with better

individuals have higher fitness, corresponding to the minimum MSE of DNN adopted in this study. The GA will

terminate if any of the stopping conditions is met. The pseudocode of the evolutionary process is given in Figure 6.

The GA has stopped and the relevant statistical information obtained, the best fit chromosome is decoded and the

information representing the various network architecture and parameters are used to build the DNN for training,

validation and testing. During the training, the three stages of evaluating the DNN used are: training, validation and

testing. The training is aimed at determining the best fit model which is validated using the validation dataset.

Thereafter the testing is carried out to determine how well the model chosen generalizes. By including these

techniques in the system, the GA system is aimed at designing the evolutionary GA-based Deep Neural network that

can be applied on any binary classification problems towards achieving high performance model.

Figure 5: Schematic Representation of the Evolution Artificial Neural Network

Table 1.2: GA Parameters

Operators Methods Values
Population Size [50]
Max generation By Convergence

Selection Roulette Wheel Prob. 0.7
Crossover (Pc) 2-Points [0,1]
Mutation (Pm) Bitwise Flip [0.6,1]
Chrom. Size 15bit string (alleles)

Figure 6: Pseudocode for Evolutionary Process

7.0. Results and Discussion

In this paper, a new methodology that involves combining genetic algorithm and Deep Neural Network (GA-Deep-

NN) in determining the optimal network parameters has been developed. The GA-Deep-NN model has been tested

for the classification of students’ admission dataset of the University of Benin, Benin City, and the standard XOR

dataset against those obtained by ordinary ANNs and Deep-NN using the trial-and-error procedures. The training,

validation and testing dataset for the Deep-NN classification model part were feed into the evolutionary Genetic

Algorithm (EA) part. The GA parameters that were adopted to classify the results are given in Table 1.2.

7.1 GA-Deep-NN Model Predictive Results for the admission dataset

In using the proposed model for the prediction of admission dataset, the best solution found is given in the following

string:

101100000101100

The string is interpreted as: a deep neural network of two hidden layers network with 13 neurons in the first layer

with sigmoid activation function and 9 neurons in the second layer with tangent activation function and sigmoid

activation function in the output neuron, batched trained with Levenberg-Marquardt back-propagation training

algorithm that uses [-0.5,0.5] as the initial weight range. The solution gave a value of 0.00032 after 500 epochs

The second best solution found gave the following string:

110010000100110

The string is interpreted as: a deep neural network of three hidden layers network with 13 neurons in the first layer

with sigmoid activation function and 9 neurons in the second layer with sigmoid activation function, 3 neurons in

the third layer with hyperbolic tangent activation function and sigmoid activation function in the output neuron,

sequentially trained with Levenberg-Marquardt back-propagation training algorithm that uses [-0.125, 0.125] as the

initial weight range. The solution gave a value of 0.00049 after 800 epochs.

7.2. GA-Deep-NN Model Classification Result for the XOR dataset

The best solution found is represented in the following string:

010011011110000

The string is interpreted as: a single hidden layer neural network with 9 neurons in the hidden layer with hyperbolic

tangent activation function and sigmoid activation function in the output neuron, batched trained conjugate gradient

back-propagation training algorithm that uses [-1. 1] as the initial weight range. The solution gave a value of

0.00018 after 300 epochs.

The second best solution found is represented in the string as:

011000100001000

The string is interpreted as: a single hidden layer neural network with 12 neurons in the hidden layer with sigmoid

activation function and sigmoid activation function in the output neuron, batched trained steepest descent back-

propagation training algorithm that uses [-0.3, 0.3] as the initial weight range. The solution gave a value of 0.00028

after 500 epochs.

8.0. Comparative Study

The classification performance of the proposed GA-Deep-NN approach is compared to the existing ANN and Deep-

NN approaches and the statistical details are given in Table 1.3.

Table 1.3: Performance statistical analysis

Metrics GA-Deep-NN Deep-NN ANN
Accuracy 98.28% 97.05% 89.09%

A comparison of the results achieved by the proposed GA-Deep-NN approach against the ordinary ANN and Deep-

NN shows clearly that the proposed model shows clearly that the proposed model achieved a significant degree of

successes. Some of the ROC curves for the single hidden layer models showing the convergence rates for the

training and testing datasets are represented in Figures 6 and 7, while the error rate and the performance of the

model in terms of fitness function are depicted in Figures 8 and 9 respectively.

Figure 7: Convergence for Training dataset Figure 7: Convergence for Test dataset

Figure 8: Error rate Figure 9 Model fitness performance

9.0 Conclusion and Future Work

The determination of optimal Deep-NN parameters using Evolutionary genetic algorithm has been presented in this

study. The purpose of this study is to design a Deep-NN with satisfactory performance with reduced human

dependency. Two datasets have been collected, treated, analyzed, and normalized for machine learning. The GA has

been applied using indirect encoding representation scheme on the Deep-NN model parameters for the design and

training. R programming language have been used with other machine learning libraries to obtain the results which

shows that the new proposed model can optimize Deep-NN parameters precisely and effectively for better

classification accuracies for binary classification problems. The aim of this study is to obtain optimal number of

hidden layers, and number of hidden neurons and other training parameters like the activation functions, training

algorithms, best initial weights among others, and the training modes depending on the type of dataset used – in this

case, binary classification problems. This study shows that though the number of these layers is domain-specific, it

is still a challenging task to obtain the perfect number of hidden neurons for all problems in advance. As a future

direction of this study, the GA will be applied to determine and study the impact of the search space on time

complexity, performance, and how the training time can be reduced considerately and still achieve high accuracies

for both the binary and multiclass classification problems.

Reference

Abdalla O.A., Osman A., and Mohammed Y. (2014) Optimizing the multilayer Feed-Forward Artificial Neural
Networks Architecture and Training Parameters Using Genetic Algorithm. International Journal of
Computer Applications Vol.99, No.10, 42-48.

Aghazadeh M. and Gharehchopogh S. (2018) A New Hybrid Model of Multi-layer Perceptron Artificial Neural
Network and Genetic Algorithms in Web Design Management Based on CMS Journal OF AI and Data
Mining, Vo. 6 No. 2, pp. 409-415.

Alejandro, C.B., and Andres G.M. (2011) Evolutionary algorithms for selecting the architecture of an MLP neural
network: A credit scoring case. In: Proceedings of the 11th IEEE International Conference on Data Mining
Workshops. Vancouver, Canada, pp 725–732.

Arifovic, J. and Gencay R. (2001) Using Genetic Algorithms to select Architecture of a Feedforward Artificial
Neural Network Physica A 289 pp 574-594.

Ashwood, A.J. (2013) Portfolio Selection Using Artificial Intelligence. Ph. D Thesis
Balochion, S., Seidabad, E.A., and Rad, S.Z. (2013) Neural Network Optimization by Genetic Algorithms for the

Audio Classification to Speech and Music International Journal of Signal Processing, Image processing and
Pattern Recognition, Vol. 6, No. 3, pp. 47-54

Batchis, P. (2013) An Evolutionary Algorithm for Neural Network Learning Using Direct Encoding Resource 53,
Chinese Digital Library, Available Online:
www.cs.rutgets.edu/~mlittman/courses/ml03/iCML03/.../batchis.pdf. Accessed 25th August, 2018

Brownlee, J. (2017). Deep learning with Python: Develop Deep Learning Models on Theano and TensorFlow Using
Keras. Melbourne, Australia.

Castillo, P.A., Carpio, J., Merelo, J.J., Prieto, A., and Rivas, V. (2000a) Evolving Multilayer Perceptrons Neural
Processing Letters 12: 115-127

Castillo, P. A., Arenas,M. G., Castellano, J. G.,Cillero, M.,Merelo,J. J., Prieto,A., Rivas, V., and Romero,G. (2000b).
Function approximation with evolved multilayer perceptrons. In

Carvalh, A.R., Ramos F.M., and Chaves A.A. (2010) Metaheuristics for the Feedforward Artificial Neural Network
(ANN) Architecture Optimization Problem Neural Computation & Application

Chiroma, H., Noor, A.S.M., and Abdulkareem, S., Abubakar, A.I., Hermawan, A., Qin, H., Hamza, F., and Herawan,
T. (2017). Neural Networks Optimization Through Genetic Algorithm Searches: A Review. Appl. Math. Inf.
Sci. 11, No. 6, 1543-1564.

http://www.cs.rutgets.edu/~mlittman/courses/ml03/iCML03/.../batchis.pdf

Chow T.T., Lin Z., and Song C.L. (2001) Applying Neural Network and Genetic Algorithm in Chiller System
Optimization. Seventh International IBPSA conference, 13-15

Dorofki, M., Elshafie, A.H., Jaafar, O., Karim, O.A., and Mastura, S. (2012). International Conference on
Environment, Energy and Biotechnology IPCBEE vol.33. pp. 39-44.

Eng M.H., Li Y., Wang Q., and Lee T.H. (2008) Forecast Forex with ANN Using Fundamental Data International
Conference on Information Management, Innovation Management and Industrial Engineering. Pp. 279-
282.

Ettaouil, M., Lazaar, M, and Ghanou, Y. (2005) Architecture Optimization Model for the Multilayer Perceptron and
Clustering Journal of Theoretical and Applied Information Technology. Vol. 47, No. 1, pp. 64-72.

Fakharudin, A.S., Sulaiman, M.N., Salihon, J., and Zainol, N. (2013) Implementing Artificial Neural Networks and
Genetic Algorithms to Solve Modeling and Optimization of Biogas Production Proceedings of the 4 th

International Conference on Computing and Informatics, ICOCI 2013 paper No. 088, pp. 121-126
Ferentinos, K.P. (2005) Biological Engineering Applications of Feedforward Neural Networks Designed and

Parameterized by Genetic Algorithms. Elsevier. Pp. 934-950.
Fischer, M.M., and Leung, Y. (1998) A Genetic-Algorithms Based Evolutionary Computational Neural Network for

Modeling Spatial Interaction Data. European Regional Science Association 38th European Congress in
Vienna, Austria Pp.1-25

Ganatra, A., Kosta, Y.P., Panchal, G., and Gajjar, C. (2011) Initial Classification Through Back propagation in a
Neural Network Following Optimization Through GA to Evaluate the Fitness of an Algorithm.
International Journal of Computer Science & Information Technology (IJCSIT), Vol. 3, No. 1, pp. 98-116.

Geron, A. (2019). Hands-On Machine Learning with Scikit-Learning, Keras, and Tensor Flow: Concepts, Tools and
Techniques to Build Intelligent Systems. 2nd Edition O’Reilly

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning Addison Wesley
Gorunescus, F. (2011) Data Mining: Concepts, Models and Techniques Springer
Guler, I., Polat, H, and Ergun, U. (2005) Combining Network and Genetic Algorithm for Prediction of Lung Sounds,

Journal of Medical Systems, Vol. 29, No. 3, pp.217-231.
Hassan, A.K., and Jasim, S.S. (2010) Integrating Neural Network with Genetic Algorithms for the Clssification Plant

Disease. Eng. & Tech, Journal, Vol. 28, No. 4, pp. 686-702.
Idrissi, J., Ramchoun, H., Ghanou, Y., and Ettaouil, M. (2016) Genetic algorithm for neural network architecture

optimization In 2016 3rd International Conference on Logistics Operations Management (GOL), pp. 1–4.
Jayaraj, V, and Raman, S. (2016). A Genetic Algorithm Optimized Multilayer Perceptron for Software Defecr

Prediction. International Journal of Advanced Technology in Engineering and Science, Vol., 4, Issue 2,
pp.132-141.

Ludermir, T.B., Yamazaki, A., and Zanchettin, C. (2006) An optimization methodology for neural network weights
and architectures. IEEE Transaction on Neural Networks, vol. 17, no. 6, pp. 1452-1459.

Igodan, C.E. (2019) Optimization of a Feed-Forward Neural Network Topologies and Parameters. M.Phil. Thesis.
(Unpublished)

Kokko, T. (2013) Neural Networks for Computationally Expensive Problems. Master’s Thesis
Karsoliya, S. (2012) Approximating Number of Hidden Layer Neurons in Multiple Hidden Layer BPNN

Architecture. International Journal of Engineering Trends and Technology Volume 3, Issue 6, pp. 714-717.
Kumari, V.S.R., and Kumar, P.R. (2015) Optimization of Multilayer Perceptron Neural Network Using Genetic

Algorithm for Arrhythmia Classification. Communications, Vol. 3, No. 5, pp. 150-157.
Negnevistsky, M. (2005) Artificial Intelligence: A Guide to Intelligent Systems Addison-Wesley, Harlow
Nienhold, D., Schwab K., and Hanne T. (2015) Effects of Weight Initialization in a Feedforward Neural Network for

Classification Using a Modified Genetic Algorithm, 3rd International Symposium on Computational and
Business Intelligence Pp 6-12.

Manavazhahan, M. (2017) A Study of Activation Functions for Neural Networks. Computer Science and Computer
Engineering Undergraduate Honours Thesis

Panchal, G., Ganatra, A., Kosta, Y.P., and Panchal, D. (2011) International Journal of Computer Theory and
Engineering, Vo. 3(2), pp.332-337

Pater, L. (2016). Application of Artificial Neural Networks and Genetic Algorithms for Crude Fractional Distillation
Process Modeling, 2016 arXiv preprint arXiv: 1605.00097

Plagianakos, V.P., Magoulas, G.D., and Vrahatis, M.N. (2005) Evolutionary Training of Hardware Realizable
Multilayer Perceptrons Neural Computing &Applic., Springer-Verlag.

Rahman, M., and Setu, T.A. (2015) An Implementation for Combining Neural Networks and Genetic Algorithms,
International Journal of Computer Science and Technology Vol.6, Issue 3, 218-222.

Rao, R.S., and Gupta, M. (2014) Design Pattern Detection by Multilayer Neural Genetic Algorithm International
Journal of Computer Science and Network, Vol. 3, Issue 1

Sagar, G.V.R and Chalam, S.V. (2011) Evolutionary Algorithm for Connection Weights in Artificial Neural
Networks. International Journal of Electronics and Communication Engineering, Vol. 4, Number 5, pp.
517-525.

Senhaji, K., Ramchoun, H., and Ettaouil, M. (2017) Multilayer Perceptron: NSGA II for a New Multi-Objective
Learning Method for Training and Model Complexity Journal of Electronic Systems, Vol. 7 No. 4, pp. 105-
114.

Sewsynker-Sukai, Y., Faloye, F., and Gueguim, E.B. (2017) Artificial Neural Networks: An Efficient Tool for
Modeling and Optimization of Biofuel Production (a mini review) Biotechnology and Biotechnological
Equipment, 31:2, 221-235

Sivanandam, S.N, Sumathi, S., and Deepa, S.N. (2014) Introduction to Neural Networks Using MATLAB 6.0
McGraw Hill Education, India.

Svozil D., Kvasnicka V., and Pospichal J. (1997) Introduction to Multi-Layer Feed-forward Neural Networks Chemo
metrics and Intelligence Laboratory Systems 39, pp. 43-62

Tan, P-N., Steinbach, M., and Kumar, V. (2006) Introduction to Data Mining Pearson
Taskiran M., Cam Z.G., and Kahraman (2015) An Efficient Method to Optimize Multi-Layer Perceptron for

Classification of Human Activities International Journal of Computing, Communications & Instrumentation
Eng. (IJCCIE) Vol. 2, Issue 2, pp. 191-195.

Thomas, A.J., Miltos, P., Simon, D.W., Saeed MG., and Robert, E.M. (2015) On Predicting the Optimal Number of
Hidden Nodes. International Conference on Computational Science and Computational Intelligence Pp.
565-570.

Urban, S. (2017) Neural Network Architectures and Activation Functions: A Gaussian Process Approach. Thesis
Zhou, J., and Li, L. (2004) Using Genetic Algorithm Trained Perceptrons with Adaptive Structure for the Detection

of Premature Ventricular Contraction, Computers in Cardiology, pp. 353-356.

