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Abstract: Accurate medical imaging analysis is crucial for clinical decision-making and effective 

diagnosis. While deep learning has shown impressive results in different vision tasks, including medical 

image classification tasks, many of these models are designed to be computationally intensive and come 

with large number of parameters and high computational cost, making them impractical for deployment 

on resource-constrained and edge devices. Recent advances have introduced efficient lightweight models 

that can achieve comparable results, while being resource efficient and suitable for mobile and embedded 

applications. In this paper, we perform a comprehensive comparison of recent state-of-the art lightweight 

models that fall under three different categories, including Convolutional neural networks (CNNs), Vision 

Transformers (ViTs), and hybrid approaches that combine the strengths of both paradigms. These models 

are evaluated on multiple medical imaging tasks. Specifically, we conduct experiments using HAM-10000 

skin lesion dataset and brain tumor dataset for skin and brain cancer classification tasks, respectively. 

On the brain tumor dataset, MobileNetV4, DeiT-Ti, and FastViT-T12 achieved the highest accuracy of 

99.92%, while on the HAM-10000 dataset, DeiT-Ti and MobileViT-V2 obtained the best accuracy of 

92.75%. 
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Medical imaging plays an important role in capturing detailed visual information about internal body 

structures, lesions and abnormal conditions, enabling clinicians and doctors to make accurate decisions 

and develop personalized treatment planning. Over the past years, artificial intelligence has been widely 

employed in medical tasks to enhance the diagnosis and assist in the decision-making process [1]. 

Especially, the evolution of deep learning has shown remarkable success in automating and improving 

performance across different medical tasks, including medical image classification [2], segmentation [3], 

detection [4], etc.  

 

These deep learning models are typically composed of multiple layers and a large number of parameters 

to capture complex and fine-grained features with high precision, resulting in accurate predictive 

capabilities. However, the high computational demands, memory requirements, and latency associated 

with such models limit their applicability in real-time and resource-constrained environments. To address 

these limitations, recent research has focused on the development of lightweight efficient deep learning 

models [5] that offers robust performance while significantly reducing the number of parameters and 

computational overhead, making them more suitable in resource-constraint environments. In this paper, 

we focus on experimenting multiple lightweight models on different medical imaging tasks such as, brain 

cancer and skin lesion classification tasks. For instance, we utilize the brain tumor dataset [6], which 

includes four categories: non-tumorous and three distinct tumor types, and the HAM-10000 dataset [7] 

which comprises seven different classes of skin lesion.  

 

Recent advances in deep learning have introduced various architectural paradigms, primarily falling into 

these three categories: Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), and Hybrid 

architectures. CNNs have been the traditional backbones for different computer vision tasks, due to their 

strong spatial features extraction capabilities and inductive biases, but they lack global processing 

capabilities. On the other hand, ViTs are designed to capture global relationships and long-range 

dependencies more effectively, but they typically demand more computational cost and larger datasets to 

achieve better or comparable results to CNNs. Hybrid architectures combine the benefits of both CNNs 

and ViTs, achieving a balance between performance and efficiency. 

 

The main purpose of this paper is to provide a comparative study between different state-of-the-art models 

that belong to different categories, including CNNs, ViTs, and hybrid models by evaluating them on 

diverse medical image classification tasks. We evaluate their performance under two training settings: 

from scratch and with transfer learning. 

 

The remainder of this paper is structured as follows: Section 2 reviews different categories of lightweight 

models, including CNNs, ViTs and hybrid architectures. Section 3 provides a detailed exploration of 

different state-of-the-art models belonging to these categories. Section 4 provides details about the 

datasets, implementation details and experimental results. Finally, Section 5 discusses the conclusion and 

future work of our study. 

 

2. Related Work 

 

2.1. Convolutional Neural Networks 
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CNNs have been widely employed in different computer vision tasks due to their capabilities in capturing 

efficient hierarchal representations through stacked convolution and pooling layers. Convolutional layers 

are designed to capture local features through trainable filters, while pooling layers reduce the spatial 

resolution, which enhances the scalability of the model. This hierarchical structure makes CNNs highly 

effective for downstream tasks such as image classification, segmentation, and object detection, etc. Over 

the years, several studies have introduced different CNN models, achieving state-of-the-art results on 

different benchmarks [8], [9], [10], [11]. However, many of these models are computationally intensive 

and require large memory requirements. To address this, other studies [12], [13], [14], [15], [16], [17] 

have focused on introducing efficient lightweight CNN models with lower computational requirements 

while maintaining robust performance, making them a preferred choice on mobile and resource-

constrained devices.  

 

Several studies have introduced different lightweight CNN models for medical image classification tasks 

[18], [19], [20], [21]. For instance, [21] proposed a custom lightweight CNN for brain tumor 

classification, which extracts features from augmented, skull-stripped brain MRI images to classify them 

as normal or abnormal. TurkerNet [19] presented a lightweight CNN model for skin cancer classification, 

which integrates MBConv4, squeeze-excitation (SE) blocks, residual connections, and decomposition 

blocks.  

 

2.2. Vision Transformers 

 

Vision Transformers (ViTs) [22] have been introduced recently to the vision community, inspired by its 

outstanding success in natural language processing tasks [23] and their ability to capture global context 

through self-attention mechanism. Moreover, self-attention enables the model to capture long-range 

dependencies, as each patch token attends to every other token in the image, enabling the model to have 

comprehensive understanding of sematic patterns. However, self-attention comes with high 

computational complexity and typically requires large-scale datasets to train effectively from scratch. 

Recent research has explored strategies such as distillation, transfer learning, extensive data 

augmentations, efficient attention mechanisms, hierarchical pooling and other approaches to enhance the 

generalization of ViTs [24], [25], [26].  

 

Several studies introduced different lightweight variants of ViTs in medical classification tasks [27], [28], 

[29]. For example, SkinDistilViT [27] proposed a lightweight vision transformer network, which employs 

a cascading distillation process for enhanced skin lesion classification. MaxCerVixT [29] proposed a new 

lightweight vision transformer model for detecting cervical cancer, and it is based on MaxViT 

architecture, but replaces MBConv block with ConvNextV2 block. Additionally, it replaces MLP blocks 

with GRN-based MLPs. 

 

2.3. Hybrid Approaches 

 

Hybrid approaches are designed to combine the benefits of both CNNs and ViTs. CNNs excels at 

processing local features and incorporate inductive biases which improves its generalization, especially 

on limited datasets. However, their reliance on local context restricts their ability to capture global context 

and long-range dependencies, which limits their ability to understand complex relationships. Moreover, 

CNNs require fixed input size, making them less flexible when dealing with images of varying 

resolutions. On the other hand, ViTs are effective at capturing global context and long-range dependencies 

through self-attention mechanisms, but it lacks the inductive biases inherent in CNNs, making them more 
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data-hungry and less effective when trained from scratch on smaller datasets. Hybrid models [30], [31], 

[32] combine the benefits of both worlds to alleviate the problems discussed in each approach, making it 

the preferred choice for many downstream tasks. Recent studies [33], [34], [35], [36], [37], [38] have also 

introduced resource-efficient hybrid models that are suitable for edge devices.  

 

Recently, several works incorporated lightweight hybrid network designs for medical classification tasks 

[39], [40]. Specifically, NeXtBrain [39] introduced a novel hybrid model for brain tumor classification, 

they mainly propose a novel convolution and transformer blocks named the NeXt Convolutional Block 

(NCB) and the NeXt Transformer Block (NTB), to effectively combine local and global features, and 

thus improving the classification results. In [40], they introduced a lightweight model based on improved 

hybrid MobileViT network. They introduced an enhanced feature representation (EFR) module to obtain 

a richer feature representation and a cosine similarity downsampling (CSD) module to reduce information 

loss and to enhance the model capability to capture the key features. 

 

2.4. Discussion 

 

The primary goal of this study is to compare the raw performance of state-of-the-art lightweight models 

from three architectural families — Convolutional Neural Networks (CNNs), Vision Transformers 

(ViTs), and Hybrid models — across datasets from different medical domains. Unlike many prior works, 

we do not focus on applying task-specific preprocessing or extensive augmentation and balancing 

techniques to optimize performance for a particular dataset or task. Our main focus is on evaluating 

lightweight architectures for their efficiency, which enables their practical use in real-time scenarios and 

on resource-constrained devices. 

 

3. Model Exploration 

 

3.1. CNN Architectures 

 

MobileNetV2 [13], introduced in 2018, is a widely utilized lightweight model that builds upon the 

MobileNets family [12]. These models are widely recognized in the vision community due to their 

efficiency, lightweight design, and their applicability for deployment on resource-constrained devices. 

MobileNetV2 is based on the inverted residual structure and replaces the standard convolution operations 

with depthwise separable convolutions to reduce computation and model size. The depthwise separable 

convolution is composed of two separate layers: a depthwise convolution followed by a pointwise 

convolution. The depthwise convolution performs lightweight filtering by applying one convolutional 

filter per each input channel, and the pointwise convolution is simply a 1x1 convolution, which effectively 

combines the outputs across channels. This design significantly decreases the number of parameters while 

maintaining competitive performance compared to other state-of-the-art models. MobileNetV2 has been 

also widely employed as a backbone in different vision tasks such as object detection, image 

segmentation, few shot learning, and generative models due to its efficient design. MobileNetV2 model 

is given Figure 1. 

 

MobileNetV4 [15] is the most recent version of the MobileNet series, designed to preserve the family’s 

focus on efficient and lightweight models for deployment on edge devices. The architecture introduces 

two novel building blocks named Universal Inverted Bottleneck (UIB) and Extra Depthwise (ExtraDW) 

Inverted Bottleneck block. The UIB extends the classical Inverted Bottleneck block proposed in 

MobileNetV2 [13], by incorporating useful design benefits from modern architectures, including 
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ConvNext block [11] and the Feedforward Network (FFN) block structure utilized in ViT [22]. The 

ExtraDW block introduces additional depthwise convolution layers to further improve spatial feature 

extraction, enhancing the model’s features representation with minimal added cost. They also offer 

distillation in their methodology to further enhance the model accuracy and efficiency. MobileNetV4 

surpassed its previous family versions and other state-of-the-art lightweight models on different 

benchmarks. Additionally, an efficient multi-query attention (MQA) module is also employed in their 

medium and large variants to further boost performance, making them hybrid-like approaches, but this 

work evaluates the small pure CNN-variant as it is more lightweight and efficient. 

 

 

Figure. 1: MobileNetV2 model [13]. 

 

3.2. ViT Architectures 

 

Data-efficient Image Transformer (DeiT) [24] is the first work to introduce knowledge distillation in 

Vision Transformers (ViTs) [22]. The authors propose a teacher-student paradigm, by augmenting the 

ViT architecture with an additional distillation token, alongside the original image patch tokens and the 

classification (CLS) token. This distillation token interacts with other tokens through self-attention and is 

trained to match the output logits of a pre-trained CNN-based teacher model, while the CLS token is 

optimized to match the ground truth labels, as in the original ViT. In their experiments, the authors utilize 

RegNet [8] as the teacher CNN model. Traditional ViTs typically require pretraining on massive datasets 

(e.g., JFT-300M dataset [41] which contains 300 million images) to achieve CNN level performance, 

which excel at generalizing on limited data due to its strong inductive biases. In contrast, DeiT achieves 

competitive generalization while being trained only on the ImageNet dataset [42], without relying on 

external large-scale data, thanks to their proposed distillation strategy. In our study, we experiment the 

DeiT-Ti variant due to its compact design and efficiency. DeiT model is given in Figure 2. 
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Figure. 2: DeiT model [24]. 

 

Pooling-based Vision Transformer (PiT) [25] is a pure transformer network that is built upon ViT 

original design, while incorporating the successful design benefits of convolutional neural networks 

(CNNs). CNNs are designed basically to increase feature depth and reduce spatial resolution through 

pooling or strided convolutions, and thus capturing hierarchical representation effectively.  In contrast, 

standard vision transformers rely mainly on self-attention operations which maintain a fixed size 

resolution across all layers, potentially limiting model scalability. PiT addresses this by introducing a 

hierarchical structure using pooling layers between transformer stages, which downsample token 

embeddings similar to how CNNs reduces feature map resolution. The authors show that utilizing resnet-

style [9] dimensional settings enhances the performance of ViT, while keeping the model lightweight and 

scalable. In our work, we experiment with the tiny variant of PiT, which is called PiT-Ti. As shown in 

Figure 3, PiT employs a hierarchical architecture similar to ResNet and avoids the fixed-resolution 

constraint of traditional ViTs. 

 
 

Figure. 3: Architectural comparison between the PiT model, ResNet, and ViT [25]. 
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3.3. Hybrid Architectures 

 

MobileViT [34] aims to build lightweight and mobile friendly networks for different mobile vision tasks 

by combining the benefits of both convolution and transformers into a unified network.  Their architecture 

comprises two main blocks, including MobileNetV2 block [13], which focuses on local feature extraction 

and their proposed MobileViT block, which integrates both convolutional and transformer layers. In a 

MobileViT block, the input is first processed by convolutions, then unfolded into non-overlapping patches 

and passed through a transformer encoder to model global representations, and finally, the transformed 

features are folded back to the original spatial resolution and fused with the block input via additional 

convolutional layers. This hybrid design allows the network to learn local and global representations. 

MobileViTV2 [35] is built upon MobileViT and introduces a more efficient design, by replacing the 

multi-headed self-attention layer in the MobileViT block with an efficient separable self-attention 

method. This proposed method operates with linear complexity. Specifically, it reduces the attention 

complexity from 𝒐(𝒌𝟐) 𝒕𝒐 𝒐(𝒌) only. In our study, we evaluate MobileViTV2 on the experimented 

datasets due to its improved efficiency compared to MobileViT. MobileViT is illustrated in Figure 4. 

 

 

Figure. 4: MobileViT model [34]. 

 

FastViT [36] is a fast hybrid Vision Transformer architecture that achieves a state-of-the-art latency and 

accuracy tradeoff. Its core innovation is the RepMixer block, an efficient convolution-based token mixer 

that employs structural reparameterization similar to ConvMixer [43]. This structural reparameterization 

enhances model capacity and reduces memory access by reparametrizing the skip connections during 

inference. For training, FastViT employs linear train-time overparameterization, where standard dense 

𝒌𝒙𝒌  convolutions are replaced with factorized versions to improve performance. The architecture 

strategically avoids self-attention in its initial layers, where features maintain high resolution. Instead, it 

utilizes large kernel convolutions as an efficient alternative in the early stages of the network, while self-

attention mechanism is applied only in the latest stage that operates on low-resolution features. FastViT 

has achieved comparable performance to state-of-the-art models like CMT [44], ConvNext [11], 

EfficientNet [17] and other models, while being much faster on mobile and edge devices at inference. 
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Figure 5 illustrates the FastViT architecture and the application of reparameterization during inference to 

fuse linear blocks.  

 

 

Figure. 5: FastViT model [36]. 

 

4. Experiments 

 

4.1. Datasets 

 

The brain tumor dataset [6] comprises 7023 MRI images captured from different patients. This dataset is 

a collection of three different datasets including, Figshare, Br35H, and SARTAJ datasets. The dataset 

images are categorized into four different types, including no-tumor, meningioma, glioma, and pituitary. 

The training and testing sets comprise 5712 and 1311 samples, respectively. Table 1 presents the 

distribution of the samples utilized in each of the training and testing sets. Figure 6 shows a random 

sample from each of the four different brain tumor categories.  

 
Table 1: The distribution of training and testing samples for brain tumor dataset. 

 

 

 

 

 

Class # Training samples # Testing samples 

No tumor  1595 405 

pituitary 1457 300 

meningioma 1339 306 

glioma 1321 300 
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Figure. 6: Random samples of the brain tumor dataset. 

 

The skin lesion HAM-1000 dataset [7] contains 10015 total dermatoscopic images. Each image is of size 

450 x 600 pixels, and the dataset is widely used for training and evaluating models in skin cancer 

classification tasks. The dataset consists of seven different skin lesion categories: Keratosis and Intra-

Epithelial Carcinoma (AKIEC), Melanoma (MEL), Dermatofibroma (DF), Melanocytic Nevi (NV), 

Vascular lesions (VASC), Benign Keratosis (BKL), and Basal Cell Carcinoma (BCC). The dataset 

distribution is imbalanced which represents a challenge in medical imaging tasks. The samples range from 

6705 for the largest class (NV) to only 115 sample for the smallest one (DF). In this paper, we follow the 

same data split utilized in [38], [45], where the training set consists of 9187 samples and the testing set 

consists of 828 samples. Figure 2 represents random samples from the HAM-10000 dataset.  

 

 

Figure. 7: Random samples of the HAM-10000 dataset. 

 

4.2. Implementation Details 

 

We utilize an image resolution of 224x224 for both datasets. All models are initialized with ImageNet-

pretrained weights and fine-tuned for 200 epochs using the PyTorch framework on an NVIDIA L4 GPU. 

We utilize a batch size of 64 during training and we employ basic augmentation techniques such as 

horizontal flipping and random rotation. For optimization, the Adam optimizer [46] was utilized for CNN-

based models with a learning rate of 5e-4. Conversely, for Vision Transformers and Hybrid models, the 

AdamW optimizer [47] was employed, with a cosine learning rate scheduler, an initial learning rate of 

5e-5, a warmup learning rate of 2e-5 for the first 5 epochs, and a weight decay of 0.05. 

 

4.3. Experimental Results 

 

In this section, we evaluate different lightweight models that are categorized into three different families, 

including CNNs, ViTs, and Hybrid models, on two different medical tasks. All models are tested under 

two configurations: trained from scratch and with transfer learning. In the transfer learning setting, the 

models are initialized with ImageNet-pretrained weights [42] to study the effect of transfer learning on 

the state-of-the-art models. Utilizing pretrained models enhances the performance specifically on HAM-

10000 due to the limited and unbalanced nature of this dataset. The comparison between models’ 
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computational cost is provided in Table 2, while the comparison between models’ performance is 

summarized in Table 3.  

 

Comparison between CNN models. In our experiments, we evaluate two lightweight pure CNN models, 

including MobileNetV2 [13] and MobileNetV4 [15] on the two medical datasets under the two training 

configurations. When trained from scratch, both MobileNetV2 and MobileNetV4 achieved 99.62% 

accuracy on the brain tumor dataset, whereas on the HAM-10000 dataset, MobileNetV2 achieved 

90.10%, outperforming MobileNetV4 by 1.69%. With transfer learning, MobileNetV4 achieved 99.92% 

on brain tumor dataset, surpassing MobileNetV2 by 0.07% and on the HAM-10000 dataset, MobileNetV2 

achieved 92.51%, surpassing MobileNetV4 by 0.36%. The detailed comparison for both settings is given 

in Table 3. 

 
Table 2: Comparison of the experimented models’ computational requirements. 
 

Category Model # Parameters FLOPs (G) 

Convolutional Neural Networks (CNNs) 
MobileNetV2 [13] 2.2M 0.3G 

MobileNetV4 [15] 2.5M 0.2G 

Vision Transformers (ViTs) 
PiT-Ti [25] 4.6M 0.7G 

DeiT-Ti [24] 5.5M 1.1G 

Hybrid models 
FastViT-T12 [36] 6.5M 1.1G 

MobileViTV2 [35] 4.4M 1.4G 

 
Table 3: Comparison of the performance of the evaluated models on both datasets. 

 

Comparison between ViT models. Similarly, we evaluate two lightweight pure ViT models, including 

PiT-Ti [25] and DeiT-Ti [24] on the same datasets under both training configurations. When training from 

scratch, PiT-Ti achieved 99.31% on brain tumor dataset, surpassing DeiT-Ti by 0.84%, whereas on the 

HAM-10000 dataset, DeiT-Ti achieved 87.20%, surpassing PiT-Ti by 0.12%. With transfer learning, 

DeiT-Ti outperformed PiT-Ti on both datasets, achieving 99.92% and 92.75% on brain tumor and HAM-

10000 datasets respectively, surpassing PiT-Ti by 0.07% and 0.11%. 

 

Category Model 
Transfer 

learning 

Brain Tumor 

Accuracy 

HAM-10000 

Accuracy 

 

Convolutional Neural Networks 

(CNNs) 

MobileNetV2 [13] 
 99.62% 90.10% 

 99.85% 92.51% 

MobileNetV4 [15] 
 99.62% 88.41% 

 99.92% 92.15% 

 

Vision Transformers (ViTs) 

PiT-Ti [25] 
 99.31% 87.08% 

 99.85% 92.64% 

DeiT-Ti [24] 

 98.47% 87.20% 

 99.92% 92.75% 

Hybrid models 

FastViT-T12 [36] 

 99.54% 87.92% 

 99.92% 92.39% 

MobileViTV2 [35] 
 99.62% 88.16% 

 99.85% 92.75% 
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Comparison between Hybrid models. Finally, we evaluate two lightweight hybrid models, including 

FastViT-T12 [36] and MobileViTV2 [35] on both datasets under the same configurations. When training 

from scratch, MobileViTV2 outperformed FastViT-T12 on both datasets, achieving 99.62% and 88.16% 

on brain tumor and HAM-10000 datasets, respectively surpassing FastViT-T12 by 0.08% and 0.24% on 

both datasets. With transfer learning, FastViT-T12 achieved 99.92% on brain tumor dataset, surpassing 

MobileViTV2 by 0.07%, while MobileViTV2 achieved 92.75% on HAM-10000 dataset, surpassing 

FastViT-T12 by 0.36%. 

 

Due to the limited size of datasets, all models demonstrated significant performance improvement in the 

transfer learning setting, as observed in Table 3, especially on the HAM-10000 dataset. Specifically, the 

Vision Transformers (ViTs)-based models achieved the lowest performance on both datasets compared 

to CNN and Hybrid models when trained from scratch. This is attributed to their high data requirements, 

due to their large model capacity and reliance on global feature extraction with the self-attention 

mechanism, which fails to generalize well when trained from scratch on small datasets. However, with 

transfer learning, the generalization ability of all models — particularly the ViT-based ones — improved 

significantly. 

 

5. Conclusion and Future work 

 

In this paper, we present a comparative analysis for different state-of-the-art lightweight models that lies 

into three different categories, including CNNs, ViTs, and Hybrid models. We experiment these models 

on two different medical tasks, including brain tumor and skin cancer classification, and in two different 

settings, with and without transfer learning. Specifically, we utilize brain tumor and HAM-10000 datasets 

for each task, respectively. This study main focus is to evaluate multiple efficient and lightweight models 

that can be deployed on resource constraint environments and real-time use-cases. 

For brain tumor dataset, MobileNetV4, DeiT-Ti, and FastViT-T12 achieved the best testing accuracy of 

99.92%.  Regarding the HAM-10000 dataset, MobileViTV2 and DeiT-Ti achieved the best testing 

accuracy of 92.75%. In this study, we did not apply any task-specific preprocessing, augmentation, or 

oversampling strategies, as our primary focus was to compare the raw performance of lightweight models 

across different medical tasks. 

 

In future work, we can experiment more advanced preprocessing techniques such as extensive 

augmentation, and oversampling techniques, to improve performance on the class-imbalanced HAM-

10000 dataset. Additionally, we may explore powerful techniques such as knowledge distillation, 

ensemble learning, and mixture of experts (MOEs) to further enhance model accuracy and generalization. 
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