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Abstract: The growing complexity and scale of cyberattacks have driven the evolution of Network 

Intrusion Detection Systems from traditional signature-based methods to deep learning-driven 

approaches capable of detecting novel and adversarial threats. This survey presents a comprehensive 

analysis of recent advances in flow-based and packet-based NIDS, with a focus on robustness, real-time 

performance, and adaptability to zero-day and adversarial attacks. State-of-the-art methods have been 

examined in each category, covering a diverse range of deep learning architectures including 

Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTMs), transformers, federated 

learning frameworks, and adversarial training techniques. The surveyed works are evaluated based on 

data modality, learning paradigm, deployment setting, detection capability, and resilience against 

evolving threats. Through structured taxonomy and comparative analysis, Key strengths, limitations, 

and performance trade-offs between flow-level and packet-level systems have been highlighted. Finally, 

open research challenges have been identified such as data heterogeneity, explainability, and 

adversarial robustness, and propose future directions for building adaptive and trustworthy intrusion 

detection systems suitable for real-world deployment. 

 

Keywords: Network Intrusion Detection, Machine Learning, Flow-based Detection, Packet-based 

Detection. 

 

 

1. Introduction 

 

The rapid evolution of cyber threats, characterized by increasing sophistication and scale, has 

underscored the critical need for robust Network Intrusion Detection Systems (NIDS) [1]. Traditional 

signature-based NIDS, while effective against known attack patterns, often fall short in detecting novel, 
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zero-day, and adversarial attacks due to their reliance on predefined rules and signatures [2]. This 

limitation has propelled the research community towards leveraging advanced machine learning (ML) 

and deep learning (DL) techniques to develop more intelligent, adaptive, and resilient NIDS. These 

modern systems typically process network traffic data in two primary forms: flow-based data, which 

aggregates network traffic into summarized records, and packet-based data, which involves the direct 

analysis of raw or minimally pre-processed individual packet information [3].  Both flow-based and 

packet-based approaches offer distinct advantages and present unique challenges. Flow-based systems 

are inherently scalable and efficient, making them suitable for high-throughput network environments 

like data centers and industrial networks [4]. They derive insights from aggregated statistical features 

over defined time intervals, allowing for broad-spectrum anomaly detection. However, their aggregated 

nature can limit their effectiveness in identifying subtle, low-and-slow, or stealthy attacks that may not 

significantly alter flow-level statistics. Conversely, packet-based systems provide a finer granularity of 

analysis by examining the raw contents and structures of individual packets. This allows for superior 

sensitivity to subtle anomalies and early-stage intrusions, including those embedded within encrypted 

traffic through behavioral or side-channel analysis. Nevertheless, packet-based approaches often incur 

substantial preprocessing costs and face scalability issues in high-velocity network settings, alongside 

challenges posed by the increasing prevalence of encrypted traffic [5]. Recent advancements in deep 

learning, including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) such 

as Long Short-Term Memory (LSTMs) and Gated Recurrent Unit (GRUs), transformers, and federated 

learning frameworks, have significantly enhanced the capabilities of both flow-based and packet-based 

NIDS [6]. These techniques have improved detection accuracy, generalizability, and robustness against 

evolving threats. Furthermore, the integration of adversarial learning and novel training paradigms is 

increasingly crucial for defending against sophisticated evasion tactics. [7] Despite these advancements, 

the performance and practicality of these systems vary widely depending on factors such as the dataset 

used, system architecture, attack model, and deployment constraints.  

 

This survey presents a comprehensive and comparative analysis of recent deep learning-based Network 

Intrusion Detection System approaches, categorized primarily by data granularity: flow-based and 

packet-based. Architectural designs, feature extraction techniques, learning paradigms, attack coverage, 

and adversarial resilience are examined and contrasted to reveal the respective strengths and limitations 

of each paradigm. Promising research directions are identified, and actionable insights are provided for 

practitioners aiming to develop or enhance intelligent intrusion detection systems. Figure 1 illustrates a 

structured taxonomy of deep learning-based Network Intrusion Detection Systems (NIDS), organizing 

key design and operational aspects into four main categories: Threat Types, Data Granularity, 

Deployment Context, and Robustness Strategies. Under Threat Types, systems are divided into Flow- 

 

Based Systems, which rely on aggregated traffic features such as NetFlow and IPFIX and use models 

like CNN-LSTM, BiGRU, and GAN, and Packet-Based Systems, which analyze raw packet data using 

image or sequence representations and typically apply CNN or Transformer architectures. The Data 

Granularity category covers the nature of threats targeted, including Known Attacks (supervised 

learning), Zero-Day or Out-of-Distribution (OOD) attacks (unsupervised learning), and Adversarial 

Attacks (evasion scenarios). The Deployment Context highlights the environments where NIDS may be 

applied, including High-Throughput settings like data centers, Resource-Constrained environments such 

as IoT or edge devices, and Safety-Critical industrial systems. Lastly, Robustness Strategies address 

system resilience through Architectural designs like attention mechanisms and ensembles, Data 

Processing techniques such as feature selection, and Training approaches including adversarial or 

federated methods. This taxonomy provides a comprehensive framework for analyzing and developing 
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deep learning-based NIDS solutions across multiple dimensions. Additionally, common datasets used in 

the field are outlined, and their structural characteristics are discussed. Particular attention is given to 

the challenges and future directions related to flow-based and packet-based NIDS, especially 

concerning data heterogeneity, explainability, and adversarial robustness.   
 

This paper is structured to provide a comprehensive overview of deep learning-based Network Intrusion 

Detection Systems. Following the introduction, Section 2 establishes a detailed taxonomy of NIDS 

approaches, categorizing them by data granularity (flow-based vs. packet-based) and the types of threats 

they address. Section 3 then delves into recent works in the field, presenting a detailed review of both 

flow-based and packet-based NIDS, highlighting their architectural designs, performance metrics, and 

inherent strengths and limitations. The paper concludes by identifying open research challenges and 

proposing future directions for the development of adaptive and trustworthy intrusion detection systems. 

 

2. Taxonomy of NIDS Approaches 

 

To effectively understand and contextualize the rapid advancements in deep learning-based Network 

Intrusion Detection Systems, it is essential to establish a comprehensive taxonomy. This taxonomy 

categorizes surveyed approaches based on several critical dimensions that profoundly influence their 

performance, robustness, and applicability in real-world scenarios. These dimensions include data 

granularity, threat types addressed, deployment context, and robustness strategies. 

 

2.1. Data Granularity: Flow-Based vs. Packet-Based 

 

The fundamental distinction in NIDS models lies in their operational data granularity: 

based NIDS approaches by data granularity and threat model.-. Taxonomy of deep learning1Figure  
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­ Flow-Based Systems: These systems process aggregated statistical features derived from sequences 

of packets over defined time windows. Examples of flow data include NetFlow [8], IPFIX [9], and 

sFlow [10], which summarize communication sessions by capturing metadata such as 

source/destination IP addresses and ports, protocol, byte counts, and packet counts. This aggregation 

enables highly scalable analysis, making flow-based NIDS particularly suitable for high-throughput 

network environments where detailed packet inspection would be computationally prohibitive. 

While efficient for detecting large-scale anomalies and known attack patterns, their reliance on 

summarized data can limit their ability to identify subtle, low-frequency, or stealthy attacks that do 

not significantly alter flow statistics. 

­ Packet-Based Systems: In contrast, packet-based systems operate directly on the raw content or 

low-level features of individual network packets. This approach offers significantly higher fidelity, 

allowing for the detection of fine-grained anomalies, polymorphic payloads, and even patterns 

within encrypted traffic through techniques like traffic analysis or side-channel information. 

Methods often involve converting packet data into various representations, such as grayscale images 

[11], multi-channel image encodings of headers and payloads [12], or token sequences for 

transformer models [13]. While providing superior sensitivity to subtle intrusions, packet-based 

NIDS typically incur substantial preprocessing costs and face scalability challenges in high-velocity 

networks due to the sheer volume of data they must process. 

Figure 2 conceptually illustrates the architectural distinction between flow-based and packet-based 

NIDS, emphasizing the abstraction level of data processing and the corresponding learning pipeline in 

each approach. 

 

 
Figure 2. Flow-Based vs Packet-Based NIDS Architectural Overview 

 

2.2. Threat Types Addressed 

 

Modern NIDS must be capable of contending with a diverse array of cyber threats. The design of a 

NIDS often reflects its primary focus concerning threat types: 

­ Known Attack Signatures: Many NIDS, particularly those based on supervised learning, excel at 

detecting previously identified attack patterns. These systems are trained on datasets containing 
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labeled instances of known attacks and normal traffic. While highly accurate for recognized threats, 

they are inherently limited in their ability to detect novel or evolving attacks. 

­ Zero-Day and Out-of-Distribution (OOD) Attacks: A critical challenge for NIDS is the detection 

of zero-day exploits and attacks that deviate significantly from known patterns. Systems designed to 

address these threats often incorporate unsupervised learning techniques (e.g., anomaly detection, 

clustering), semi-supervised learning, or novelty detection mechanisms. These approaches aim to 

identify unusual behaviors or deviations from established baselines, thereby offering a proactive 

defense against unknown threats [14]. 

­ Adversarial Attacks: With the increasing sophistication of attackers, NIDS are now confronted 

with adversarial attacks specifically designed to evade detection by manipulating input data. Robust 

NIDS incorporate specialized mechanisms such as adversarial training, input sanitization, feature-

space regularization, and explainability-driven defenses to improve generalization and resilience 

against such sophisticated evasion tactics [15, 16]. 

 

3. NIDS: Recent Works 

 

This section provides a detailed review of recent deep learning-based Network Intrusion Detection 

Systems, categorized by their data granularity: flow-based and packet-based. For each category, we 

highlight key architectural designs, datasets utilized, reported performance metrics, and inherent 

strengths and limitations. 

 

3.1. Flow-Based NIDS 

 

Flow-based NIDS leverage aggregated network traffic information to detect intrusions, offering 

scalability and efficiency for high-throughput environments. Recent research in this domain has 

explored diverse deep learning architectures to enhance detection capabilities: 

­ Li et al. [17] proposed an unsupervised Generative Adversarial Network (GAN) model for NIDS, 

incorporating flow encoding and adaptive thresholding. Evaluated on benchmark datasets such as 

NSL-KDD [18], CIC-IDS2017 [19], CIC-DDoS2019 [20], and UNSW-NB15 [21], their model 

demonstrated strong zero-day detection capabilities with an Area Under the Curve (AUC) 

approximately 0.98. However, a notable limitation of this approach is the inherent instability often 

associated with GAN training, which can affect its reliability and deployment in real-world 

scenarios . 

­ Asadi et al. [22] combined Convolutional Neural Networks (CNNs) and Long Short-Term Memory 

(LSTM) networks for botnet recognition. Their approach utilized flow features, with dimensionality 

reduction achieved through Classification and Regression Trees (CART). Tested on the ISCX [23] 

and ISOT [24] datasets, the model achieved a precision of approximately 99.7%. Despite its high 

precision, the model exhibited susceptibility to advanced adversarial attacks, including Projected 

Gradient Descent (PGD) and Basic Iterative Method (BIM), indicating a need for enhanced 

adversarial robustness . 

­ Awad et al. [25] introduced an ensemble model comprising LSTM, Gated Recurrent Unit (GRU), 

and dilated convolutions, augmented with an attention mechanism. Feature selection was optimized 

using an Improved Cheetah Optimizer, leading to approximately 95% accuracy on the CIC-IDS2017 

dataset. While effective, the computational demands of this ensemble approach make it challenging 

for real-time deployment in resource-constrained environments. 

­ Emirmahmutoğlu and Atay [14] explored the use of metaheuristic feature selection methods, 

specifically Particle Swarm Optimization (PSO), Flower Pollination Algorithm (FPA), and 
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Differential Evolution (DE), in conjunction with classical classifiers. This hybrid approach achieved 

near-perfect F1 scores (approximately 0.999), demonstrating high accuracy on known attack 

patterns. However, its adaptability to new and unseen threats remains limited, as it tends to overfit to 

known patterns . 

­ Hu et al. [26] developed a Bidirectional GRU (BiGRU) network integrated with a gated self-

attention mechanism. To address class imbalance, they employed a hybrid resampling technique 

combining undersampling and K-SMOTE. This model achieved approximately 98.4% accuracy 

across various datasets, performing particularly well in detecting minority class intrusions. The 

attention mechanism enhances the model’s ability to focus on relevant features, improving overall 

detection performance . 

­ Talpini et al. [27] applied Bayesian neural networks with Mahalanobis distance calibration to 

provide trustworthy uncertainty estimation for NIDS. This approach proved effective for open-set 

detection, allowing the system to identify novel attacks with a measure of confidence. A drawback, 

however, is the slower inference speed associated with Bayesian neural networks, which can impact 

real-time detection capabilities . 

­ Khan et al. [28] proposed an Artificial Neural Network (ANN) with genetic algorithm-based 

feature optimization, specifically tailored for Industrial Internet of Things (IIoT) environments. This 

framework achieved approximately 99.5% accuracy on IoTID20-based datasets [29]. While highly 

effective for IIoT, the specialized nature of this framework suggests it may not generalize well to 

broader network environments. 

 

3.2. Packet-Based NIDS 

 

Packet-based NIDS analyze raw packet content to identify intrusions, offering fine-grained detection 

capabilities crucial for subtle or low-volume attacks. Research in this area has focused on innovative 

data representations and advanced deep learning architectures: 

 

­ Hore et al. [11] converted network packets into grayscale images, which were then analyzed using 

CNNs over five-packet windows. This method achieved 99.7% accuracy on CIC-IDS2017, 

enhancing spatial learning for intrusion detection. A practical consideration for this approach is the 

need for efficient PCAP (Packet Capture) handling to manage the large volume of raw packet data . 

­ Doriguzzi Corin et al. [12] applied multi-channel image encodings of packet headers and payloads, 

combined with hybrid CNN-BiLSTM models. This approach yielded approximately 98% F1 score 

on several datasets, demonstrating its effectiveness in capturing both spatial and sequential patterns 

within packet data. However, the encoding process itself incurs significant computational costs, 

which can impact real-time performance . 

­ Nguyen et al. [13] modeled network packets as token sequences, processing them with transformer 

encoders. This method achieved approximately 99% accuracy on multiple datasets, showcasing the 

power of transformer architectures in capturing long-range dependencies within packet flows. A 

major challenge with this approach is the high memory usage associated with transformer models, 

which can be a limiting factor for deployment in environments with constrained resources . 

­ Hore et al. [15] augmented packet images using various techniques such as noise, flips, and 

rotation, and paired them with ResNet-based CNNs. This augmentation strategy aimed to improve 

robustness against minor obfuscations in network traffic. While effective in enhancing resilience, 

the introduction of augmentation artifacts can sometimes negatively affect the model’s overall 

performance . 
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­ Verma et al. [30] demonstrated few-shot classification using prototypical networks on byte 

sequences extracted from PCAPs. This approach performed well with minimal training data, making 

it suitable for scenarios where labeled data is scarce. However, it struggled with detecting subtle 

variations in attack patterns, indicating a potential limitation in its ability to generalize to highly 

nuanced threats . 

­ Hu et al. [31] utilized a CNN-GRU hybrid model applied directly to raw payload bytes. This model 

achieved a 98.2% F1 score on CIC-IDS2017, effectively capturing both local features (CNN) and 

temporal dependencies (GRU) within the payload. The training process for such hybrid models can 

be time-intensive, requiring substantial computational resources . 

­ Ayantayo et al. [16] implemented adversarial training on packet images using Fast Gradient Sign 

Method (FGSM) and Projected Gradient Descent (PGD) defenses. This approach maintained 

approximately 95% accuracy under adversarial conditions, demonstrating improved robustness 

against evasion attacks. However, adversarial training is computationally intensive, requiring 

significant resources for model development and deployment 

 

4. Comparative Analysis of Flow-Based and Packet-Based NIDS 

 

Flow-based and packet-based network intrusion detection systems (NIDS) have evolved significantly, 

each bringing distinctive capabilities tailored to various operational environments. Tables 1 and 2 

summarize key studies from both domains, highlighting differences in architecture, datasets, strengths, 

and limitations.  

Flow-based NIDS exhibit significant architectural diversity, ranging from GANs and ensemble models 

to attention-based and Bayesian networks. Commonly used datasets for evaluation include NSL-KDD, 

CIC-IDS2017, UNSW-NB15, and domain-specific datasets like IoTID20. Most studies report high 

AUC/F1 scores, particularly on benchmark datasets, with GANs and Bayesian models showing promise 

in zero-day or Out-of-Distribution (OOD) detection. Key trade-offs include increased model complexity 

for improved robustness (e.g., FlowGAN, UC-BNN), efficient class imbalance management with 

attention-based models, and the speed and explainability of feature selection frameworks, which may, 

however, overfit known patterns. 

 

Table 1 presents a snapshot of recent flow-based approaches. These systems primarily leverage network 

flow metadata, offering lightweight and scalable detection suitable for high-throughput and encrypted 

environments. For instance, Li et al. [17] employed FlowGAN with strong zero-day detection 

capabilities (AUC ≈ 0.98), though at the cost of GAN training instability. Asadi et al. [22] combined 

CNN and LSTM to detect encrypted botnets with ~99.7% precision, yet remained vulnerable to 

adversarial perturbations like PGD and BIM. Robustness-enhancing methods, such as the ensemble 

attention model by Awad et al. [25], show promise but still exhibit similar vulnerabilities. Methods 

incorporating explainable or heuristic-driven learning (e.g., Emirmahmutoğlu & Atay [14], Khan et al. 

[28]) achieved high performance, F1-scores approaching 0.999, but lack adaptability to novel attack 

types. 

In contrast, Table 2 summarizes packet-based NIDS, which analyze individual packet contents or their 

transformations (e.g., images or encoded sequences). These systems tend to demonstrate higher 

classification accuracy and adversarial robustness. Hore et al. [11] leveraged grayscale packet images 

and CNNs to reach 99.7% accuracy, while Nguyen et al. [13] applied transformer-based encoders to 

achieve near-perfect performance with strong generalization. Despite this, the computational cost of 

packet encoding, heavy preprocessing, and training time (e.g., Hu et al. [31]) remains a barrier to 

deployment in resource-constrained environments. Few-shot learning and augmentation-based strategies 
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(e.g., Verma et al. [30], Hore et al. [15]) show potential for zero-day detection but raise concerns about 

semantic drift and overfitting.  

 

Packet-based NIDS excel in identifying fine-grained or low-volume attacks, including those embedded 

within encrypted traffic patterns and polymorphic payloads, due to their high data granularity. 

Architectural trends are dominated by CNNs, often paired with RNNs (GRU/LSTM) or transformers to 

capture both spatial and sequential patterns. Common data representations include image-based, byte 

sequence, and embedding-based encodings, with a growing trend towards multimodal input (e.g., 

combining header and payload information). While some works incorporate adversarial training or 

perturbation resistance, this area requires further research. Key challenges include high computational 

costs, large model sizes, and sensitivity to packet loss or capture noise, which can hinder real-time 

deployment. 

 

Taken together, the comparison reveals that flow-based NIDS excel in efficiency, scalability, and 

deployment practicality, especially in scenarios with constrained computational budgets or encrypted 

traffic. Conversely, packet-based NIDS are better suited for precision-critical applications, offering 

stronger granularity, adversarial resilience, and deep feature representation, albeit with increased 

memory and runtime overhead. From a research perspective, this comparative survey provides a 

consolidated view of the trade-offs between flow-based and packet-based paradigms, offering readers a 

practical foundation for selecting architectures aligned with their constraints and threat models. For 

authors and system designers, the side-by-side analysis highlights key open challenges, such as the need 

for adaptive models, resilience against adversarial threats, and balanced computational demands. 

Moreover, this work encourages hybrid and context-aware designs that fuse the strengths of both 

categories, pointing toward an integrative roadmap for future NIDS research 

 
Table 1 Summary of Flow-Based NIDS Approaches 

 

Study (Year) Data & 

Dataset 

DL 

Architecture 

Key Strengths Drawbacks Classification Type 

Li et al. [17] 

(2024) 

NSL-KDD, 

CIC-IDS, 

UNSW-NB15 

Unsupervised 

FlowGAN 

Strong zero-day 

detection (AUC ≈ 

0.98) 

GAN training 

instability 

Binary (Normal vs. Anomalous 

Traffic) 

Asadi et al. 

[22] (2025) 

ISCX, ISOT CNN + 

LSTM 

~99.7% precision, 

scalable encrypted 

botnet detection 

Vulnerable to 

PGD/BIM 

Binary (Normal vs. Botnet 

Traffic) 

Awad et al. 

[25] (2025) 

CIC-IDS2017 Ensemble + 

Attention 

Adversarially robust 

ensemble (≈ 95%) 

Vulnerable to 

PGD/BIM 

Binary (Normal vs. Intrusion) 

Emirmahmu

toğlu & Atay 

[14] (2025) 

Multiple Metaheuristic 

FS + ML 

Near-perfect F1 

(~0.999), 

explainable 

Lacks zero-

day 

adaptability 

Binary (Normal vs. Abnormal) 

Hu et al. [26] 

(2024) 

CIC, NSL-

KDD, KDD99 

BiGRU + 

Self-

Attention 

~98.4% accuracy, 

handles class 

imbalance well 

Higher 

runtime due to 

resampling 

Binary (Normal vs. Attack) 

Talpini et al. 

[27] (2024) 

ToN-IoT [32-

39], CIC 

Bayesian NN 

+ UQ 

Reliable open-set 

detection 

Slower 

inference 

Multiclass (Network Traffic 

Classification into: DoS, Probe, 

R2L, U2R, and Normal) 

Khan et al. 

[28] (2025) 

IoTID20 ANN + GA High IIoT accuracy 

(≈ 99.5%) 

Hard to 

generalize 

beyond IIoT 

Multiclass (Benign or 

Particular Intrusion Type) + 

Binary (Normal vs. 

Anomalous) and open-set 

classification 
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Table 2 Summary of Packet-Based NIDS Approaches 

 

Study (Year) Data & Dataset DL Architecture Key Strengths Drawbacks Classification Type 

Hore et al. [11] 

(2024) 

CIC-IDS2017 Grayscale Packet 

Images + CNN 

99.7% 

accuracy, 

spatial insight 

Heavy PCAP 

preprocessing 

Multiclass classification 

(network intrusion 

detection, distinguishing 

between known attack 

patterns and novel/unseen 

samples) 

Doriguzzi et al. 

[12] (2024) 

UNSW/IDS2017 Multi-channel 

CNN + BiLSTM 

~98% F1; 

temporal 

context 

captured 

High 

encoding 

overhead 

Binary classification 

(DDoS attack detection) 

Nguyen et al. 

[13] (2025) 

Multiple Packet 

Transformer 

Encoder 

~99% 

performance, 

robust 

Memory-

intensive 

Binary classification 

(network intrusion 

detection - benign vs. 

malicious traffic, with 

adaptation to novel attack 

patterns) 

Hore et al. [15] 

(2023) 

Multiple Augmented Packet 

Images + ResNet 

Resilient to 

obfuscations 

Risk of 

augmentation 

artifacts 

Focuses on adversarial 

network packet 

generation to evade 

NIDS, implying a 

classification task (likely 

multiclass) 

Verma et al. 

[30] (2025) 

CIC + custom Prototypical Few-

Shot 

Few data yet 

good 

performance 

Issues with 

novel variants 

Binary classification 

(anomaly-based intrusion 

detection - normal vs. 

abnormal) 

Hu et al. [31] 

(2021) 

CIC-IDS2017 CNN-GRU Hybrid 98.2% F1; 

sequential 

modeling 

Long training 

time 

Multiclass classification 

(network traffic 

classification into 

different applications, 

including encrypted ones) 

Ayantayo et al. 

[16] (2023) 

CIC & Bot-

IoT[40-45] 

FGSM/PGD-aware 

CNN 

~95% 

robustness 

under attack 

High training 

complexity 

Multiclass classification 

(network intrusion 

detection) 

 

As visualized in Figure 3, flow-based NIDS approaches report slightly higher average accuracy 

compared to packet-based ones, reflecting their maturity, scalability, and suitability for high-throughput 

environments, despite some trade-offs in adversarial robustness. 
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Figure 3. Average Accuracy Comparison: Flow vs Packet Based NIDS 

 

5. Comparative Discussion of Datasets 

 

The quality and characteristics of datasets play a pivotal role in shaping the performance and 

generalizability of NIDS. Throughout the reviewed studies, a diverse range of datasets has been 

employed: some legacy, some synthetic, and others designed for emerging domains like IoT or 

encrypted traffic. A comparative reflection reveals significant implications for benchmarking and 

reproducibility. NSL-KDD and KDD99 are among the earliest datasets used predominantly in flow-

based studies (e.g., [17], [26]), valued for their simplicity and structured labeling. However, they suffer 

from outdated traffic profiles, limited protocol diversity, and lack of modern attack vectors—leading to 

models that risk overfitting or poor real-world translation. In contrast, CIC-IDS2017 has become a de 

facto standard across both flow-based (e.g., [25]) and packet-based approaches (e.g., [11], [31]). It 

offers full PCAPs with diverse benign and malicious behaviors, making it well-suited for packet-image 

conversion, deep sequence modeling, and botnet detection. Nevertheless, it includes time overlaps and 

imperfect labeling, which may bias temporal learning architectures. Datasets like UNSW-NB15 and 

ToN-IoT address some of these issues by incorporating modern protocol behaviors, IoT scenarios, and 

richer feature sets. Flow-based models such as [14] and [27] have leveraged them to assess 

generalizability in heterogeneous environments. However, preprocessing inconsistencies and the 

synthetic nature of attacks may still raise concerns about real-world fidelity. More specialized datasets 

like IoTID20, Bot-IoT, ISOT, and ISCX appear in studies focusing on IIoT, botnet detection, or 

encrypted traffic (e.g., [22], [28], [16]). These datasets offer valuable diversity in terms of device types, 

traffic encryption, and attack sophistication. Yet, they often lack labeling granularity and standard 

feature schemas, which challenge model interoperability. Overall, the dataset comparison underscores a 

fundamental tension between realism and control. Older datasets provide consistency but lack 

relevance, while newer ones offer realistic diversity at the cost of labeling accuracy or reproducibility. 

For future work, this suggests the need for benchmarking frameworks that integrate multi-dataset 

training and cross-dataset validation, ensuring robust, scalable, and unbiased NIDS evaluation pipelines. 

As shown in Table 3, datasets vary significantly in terms of realism, attack diversity, and support for 

packet-level analysis. While legacy datasets like KDD99 and NSL-KDD remain widely used, more 

recent collections such as CIC-IDS2017, ToN-IoT, and UNSW-NB15 provide better coverage of 

modern threats and richer packet-level information, making them preferable for contemporary NIDS 

evaluations. Table 3 summarizes widely used NIDS datasets by their structure, number of features, and 

purpose. While older datasets like KDD’99 and NSL-KDD are limited to feature vectors (CSV), more 

recent datasets such as CIC-IDS2017, ISCX, and Bot-IoT provide both PCAP traces and labeled 
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features, allowing researchers to pursue both flow-based and packet-based modeling. IoT-specific 

datasets (e.g., ToN-IoT, IoTID20) address modern IIoT threats but vary in raw trace availability. 

 
Table 3 Comparison of Commonly Used Datasets in NIDS Research 

 

Dataset Year Type Format Notable Use 

Cases 

Number of 

Samples 

Number of Features 

w/o Class Label (CSV) 

NSL-KDD 2009 Simulated CSV Classic baseline; 

low complexity 

125,973 (train), 

 22,544 (test) 

41 

KDD'99  1999 Simulated CSV Legacy; used for 

comparison only 

4,898,431 

(original train), 

1,074,992 

(distinct train) 

41 

CIC-IDS2017 2017 Realistic  PCAP + CSV Widely used; 

broad attack 

types 

~3,000,000 78 

UNSW-NB15 2015 Hybrid PCAP + CSV Balanced attacks 

& benign data 

2,540,044 47 

ISCX 2012 Realistic PCAP + CSV Flow and time-

based IDS 

research 

>2,000,000 

 (traffic 

 packets) 

22 

ISOT 2011 Realistic PCAP Botnet behavior 

detection 

1,379,274 Depends on extraction 

(~80+) 

Bot-IoT 2018 IoT-focused

  

PCAP + CSV Ideal for IIoT 

and DDoS 

research 

>72,000,000 

 (pcap), 

 ~3,000,000 

 (5% sample) 

~84 

ToN-IoT 2020 IoT-focused

  

CSV (per 

source)  

Lightweight IIoT 

NIDS evaluation 

2,233,921 41 

IoTID20 2020 IoT-focused PCAP + CSV IIoT attack 

fingerprinting 

625,783 ~81 

 

6. Conclusion and Future Directions 

 

In this survey, flow-based and packet-based deep learning approaches for Network Intrusion Detection 

Systems (NIDS) were reviewed and compared. Architectural characteristics, dataset preferences, 

detection capabilities, and vulnerabilities were analyzed to offer a holistic understanding of the current 

research landscape. Flow-based systems were generally observed to provide higher scalability and 

reduced computational overhead. These systems tend to be more efficient for encrypted or high-speed 

traffic scenarios. Conversely, packet-based approaches were often associated with higher detection 

accuracy for fine-grained threats, due to their ability to extract rich spatial and sequential features from 

raw packets. However, this came at the cost of increased preprocessing and memory consumption. Key 

findings from this survey may be summarized as follows: 

­ A lack of standardized benchmarking across studies was identified, which has made objective 

comparisons difficult. A shared evaluation protocol, supported by reproducible splits of public 

datasets, is recommended. 

­ Most existing approaches were found to operate exclusively on either flow or packet 

representations. The integration of both representations into hybrid models has been proposed by 

some studies but remains largely underutilized . 
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­ Few models were observed to incorporate explainability or uncertainty quantification techniques. 

These features are increasingly important for deployment in critical or safety-sensitive 

environments. 

To advance this domain, several research directions are suggested. Future work may focus on (1) the 

design of hybrid NIDS frameworks that dynamically adjust between flow and packet inputs based on 

context, (2) the development of lightweight yet explainable models for resource-constrained networks, 

and (3) the creation of new datasets that better reflect emerging attack vectors, such as those targeting 

IoT and encrypted communications. 
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