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Abstract: Object detection in Remote sensing images enables crucial functionalities in various fields, 

including agriculture, environmental monitoring, urban planning, and disaster management. While 

traditional methods face challenges in speed and accuracy, deep learning has emerged as a powerful 

solution. This paper compares YOLOv8 variants (nano, small, medium, and large) for ship detection in 

high-resolution satellite images. The YOLOv8 model is a one-stage object detection that utilizes a Cross 

Stage Partial Darknet-53 (CSPDarknet53) backbone for feature extraction. A Path Aggregation Network 

- Feature Pyramid Network (PAN-FPN) neck for multi-scale feature fusion, and a decoupled head for 

final predictions. Its speed and accuracy can be adjusted by selecting from different model variants, which 

vary in size and complexity. The Ship dataset was chosen due to its challenging characteristics, including 

high-resolution imagery (30–50 cm) from Google Earth, diverse viewpoint variations, occlusions, cloud 

cover, shadows, varied lighting conditions, and cluttered marine backgrounds. mean average precision 

(mAP), recall, precision, F1-score, training time, and model size were utilized in evaluating YOLOv8 

variants. The results demonstrate that YOLOv8s achieved the best balance between accuracy and 

efficiency, with an F1-score of 96.3% and a mAP50-95 of 70.4%. Although YOLOv8n demonstrates the 

highest processing speed, its detection performance is marginally inferior. In contrast, Larger models 

(YOLOv8m and YOLOv8l) do not show significant improvements in accuracy despite increased 

computational cost. The results provide insights into the effectiveness of each model for ship detection, 

enabling decisions for selecting the optimal model based on the balance between accuracy, speed, and 

resource utilization. 
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Remote sensing, utilizing satellites and aircraft, gathers data without direct contact, which is crucial for 

different applications such as agriculture, environmental monitoring, urban planning, and disaster 

management [1]. Technological advancements have significantly improved the efficiency of image 

acquisition in remote sensing. The captured images are of high spatial, temporal, and spectral resolutions. 

Spatial resolution determines image detail, temporal resolution is the acquisition frequency for a specified 

region, and spectral resolution is the quantity of sensed electromagnetic wavelengths. These rich features 

indicate the growing importance of remote-sensing image analysis and classification [2]. However, the 

inherent complexity and dense distribution of objects within these images continue to render manual 

extraction processes inefficient and susceptible to errors. Hence, object detection approaches automate 

and improve object extraction from remote sensing imagery [3]. Traditional remote sensing image object-

detection algorithms encompass several categories: (1) threshold-based methods, which rely on brightness 

or color differences, but are vulnerable to variations in lighting and complex backgrounds; (2) feature 

engineering methods utilize manually designed features like texture and shape, coupled with machine 

learning classifiers such as support vector machines, but require significant domain expertise; (3) template 

matching compares objects against predefined templates, effective for similar objects but less adaptable 

to variations like rotation; (4) machine learning methods employ algorithms like neural networks to 

automatically learn features and classifiers, requiring substantial labeled data (5) segmentation-based 

approaches divide images into regions for detailed analysis using methods like region growing or graph 

cuts, ideal for clear object-background boundaries; and (6) spectral information methods leverage spectral 

bands to identify objects based on spectral reflectance and angles. Each method offers distinct advantages 

and challenges, tailored to different remote sensing scenarios [4]. While traditional object detection 

methods have improved, they still struggle with speed and accuracy. Furthermore, aerial and satellite 

imagery introduces significant complexities, including viewpoint variations, occlusions, cloud cover, 

shadows, diverse lighting, and the need for noise reduction [5-6]. 

 

Nowadays, scholars predominantly employ deep learning models. Examples include the Regions with 

Convolutional Neural Networks (R-CNN) family (R-CNN, Fast R-CNN, Faster R-CNN), Single Shot 

MultiBox Detector (SSD), and You Only Look Once family (YOLO). These models employ 

Convolutional Neural Networks (CNNs) to directly extract features and perform object detection on 

feature maps [6]. Generally, deep learning approaches are broadly categorized into two main types: Two-

stage detectors, such as the R-CNN variants, operate by initially generating region proposals. This 

involves meticulously identifying candidate regions that are likely to contain objects, often using 

techniques like Selective Search or a Region Proposal Network (RPN). While computationally more 

demanding, these methods generally achieve higher accuracy due to their precise candidate region 

extraction. In contrast, one-stage detectors, exemplified by YOLO and SSD, prioritize computational 

efficiency by directly predicting object attributes without an explicit region proposal step. This 

streamlined approach leads to faster processing speeds, though it may entail a slight trade-off in accuracy, 

particularly in scenarios involving complex object distributions or occlusions [7]. 

 

YOLO stands for “You Only Look Once” and is a widely adopted one-stage object detection algorithm 

that employs a unified neural network to predict bounding boxes and class probabilities in a single pass. 

YOLOV8 optimizes feature extraction and detection through sophisticated backbone and neck designs 

and employs an Ultralytics anchor-free split head, resulting in improved precision and efficiency 

compared to traditional methods. YOLOv8 excels in object detection across various applications. Its 

diverse pre-trained models variants (Nano, Small, Medium, and Large) are designed to optimize the 

balance between speed, accuracy, and computational efficiency, allowing users to choose the best fit for 
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their requirements to achieve state-of-the-art accuracy and rapid real-time inference, YOLOv8 is a reliable 

solution for applications such as autonomous vehicles, robotics, security and surveillance, retail and 

manufacturing, and medical imaging. As an open-source framework, YOLOv8 benefits from continuous 

development and a robust community, ensuring its adaptability and sustained relevance in achieving state-

of-the-art accuracy and real-time inference capabilities across a wide range of practical scenarios [8]. 

 

This paper evaluates the performance of different YOLOv8 variants (YOLOv8n, YOLOv8s, YOLOv8m, 

and YOLOv8l) using the Ship dataset. YOLOv8, a state-of-the-art single-stage object detection 

framework, employs a Cross Stage Partial Darknet-53 (CSPDarknet53) backbone for robust feature 

extraction, a Path Aggregation Network-Feature Pyramid Network (PAN-FPN) neck for effective multi-

scale feature fusion, and a decoupled head for final predictions. The model variants offer flexibility in 

balancing speed and accuracy by varying in size and computational complexity. The Ship dataset, 

characterized by high-resolution imagery (30–50 cm) sourced from Google Earth, was chosen for its 

challenging attributes, including diverse viewpoints, occlusions, cloud cover, shadows, varying lighting 

conditions, and complex marine backgrounds. Performance was assessed using metrics such as mean 

average precision (mAP), recall, precision, F1-score, training time, and model size to comprehensively 

evaluate the efficacy of the YOLOv8 variants. In ship dataset, the obtained result indicate that  the 

mAP50-95 of yolov8n, yolov8s, yolov8m, and yolov8l reached 69%, 70.4%, 68.7%, and 67.2 

respectively. 

 

The rest of the paper is organized as follows: Section 2 reviews relevant work. Section 3 introduces the 

object detection methodology for satellite images. Section 4 presents and discusses the results. Finally, 

Section 5 draws our conclusions. 

 

2. Related work 

 

This section provides a concise overview of scholarly work in object detection methods based on deep 

learning in the remote sensing domain.  Technically, the main goal of object detection is to identify and 

locate objects in images. Yu et al. [9] proposed You Only Look Once – Shuffle Reparameterized Blocks 

with Dynamic Head (YOLO-SRBD), an advanced variant of the YOLOv8 architecture, specifically 

tailored for enhanced ship detection in synthetic aperture radar (SAR) imagery. To address challenges 

posed by complex inshore environments, YOLO-SRBD integrates shuffle reparameterized blocks and a 

dynamic head, and utilizes soft non-maximum suppression during post-processing. Experimental 

evaluations conducted on the SAR Ship Detection Dataset (SSDD) demonstrated a substantial 

improvement in average precision, increasing from 66.7% (YOLOv8) to 74.3%, thereby validating the 

model’s enhanced detection capability and practical applicability. Similarly, Khalili et al. [10] introduced 

Small Object Detection YOLOv8 (SOD-YOLOv8), a modified version of YOLOv8 optimized for the 

accurate detection of small objects in high-altitude imagery. This architecture achieves improved 

performance through several key enhancements, including a Generalized Feature Pyramid Network 

(GFPN)-inspired multi-level feature fusion mechanism and the addition of a high-resolution detection 

layer. Furthermore, it incorporates an efficient multi-scale attention module and adopts Powerful-IoU 

(PIoU) for more effective and rapid bounding box regression. Comparative analysis against YOLOv8s 

revealed notable performance gains: recall increased from 40.1% to 43.9%, precision from 51.2% to 

53.9%, and mAP@0.5 from 40.6% to 45.1%. These improvements, coupled with maintained 

computational efficiency, underscore the model’s robustness and reliability in dynamic and complex real-

world scenarios. 

https://ieeexplore.ieee.org/author/37086121165
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Mostafa et al. [11] introduced a new dataset consisting of occluded road scenes common in Bangladeshi 

driving conditions to enhance the perception capabilities of AVs by solving the major challenge of 

detecting occluded objects, a major contributor to reliable and safe environmental perception. Transfer 

learning was used to fine-tune three object detection architectures: YOLOv5, YOLOX, and Faster R-

CNN, over COCO-pretrained weights. The models were then validated and compared with the tailored 

dataset. YOLOX was the best among them, scoring the highest mAP@0.5:0.95 (0.634), showing its 

improved performance in detecting occluded objects under this specific environment. 

Shen et al. [12] developed Deformable Self-attention YOLO version 8 (DS-YOLOv8), a novel object 

detection architecture built upon YOLOv8 to address the challenges of detecting objects with varying 

sizes, occlusions, and small dimensions while preserving fine details by integration of a Deformable 

Convolution Network C2f (DCN_C2f) module, which enables adaptable receptive fields, and a Self-

Calibrating Shuffle Attention (SC_SA) module, which improves focus on both spatial and channel 

information. These modifications. DS-YOLOv8 also utilizes Wise Intersection over Union (Wise-IoU) 

and a position regression loss to optimize training. The DS-YOLOv8 model achieved high accuracy 

across various public datasets, achieving average mAP@0.5:0.95 scores of 74.0%, 64.3%, 70.7%, and 

51.1%. It also maintained real-time inference capabilities and showed significant improvements in 

accuracy over YOLOv8 series models and other mainstream detection systems. 

 

Zhai et al. [13] developed an optimized YOLOv8 model to improve tiny Unmanned Aerial Vehicle  

(UAV) detection. By adding a high-resolution head, removing layers, using Space-to-Depth Convolution 

(SPD-Conv), and incorporating Global Attention Module (GAM) attention, the model achieved a 

significant boost in detection performance (11.9% precision, 15.2% recall, 9% mAP) while reducing 

parameters and size by roughly 60%. Validated on multiple datasets, this method proves highly effective 

for practical UAV detection. Magdy et al. [6] conducted a comparative study of four popular backbones: 

Residual Network with 50 layers (ResNet-50),  ResNeXt50_324d, EfficientNet_B0, and Densely 

Connected Convolutional Network (DenseNet121)—for remote sensing object detection. Using the 

NWPU VHR-10 dataset, they evaluated the backbones based on precision, recall, F1-score, average 

precision (AP), and mean AP. Their findings revealed that ResNeXt50_324d achieved the highest 

performance, with a mean AP of 0.847, surpassing the other backbones tested. 

 

Zhang et al. [14] proposed HSP-YOLOv8, an enhanced version of YOLOv8 tailored for small object 

detection in drone aerial images. It addresses challenges like occlusion, crowding, overlapping, and object 

density by adding a prediction head for higher-level features, using a Space-to-Depth Convolution (SPD-

Conv) to preserve small object details, and applying Soft-NMS during post-processing to reduce false 

detections. On the VisDrone2019 dataset, HSP-YOLOv8 outperformed YOLOv8 and other YOLO 

variants (YOLOv4 to YOLOv8l), achieving up to 11% and 9.8% gains in mAP@0.5 and mAP@0.5:0.95, 

respectively, with a top accuracy of 49.6% mAP@0.5. Despite improved accuracy, it remains efficient 

with only 11.5M parameters, 50 GFLOPs, and a 6.2 ms inference time, making it well-suited for UAV 

small object detection. Yao et al. [15] developed High-Performance YOLO version 8 (HP-YOLOv8), an 

enhanced algorithm for small object detection in remote sensing. This model uses the C2f-DM module, 

Bi-directional Global Feature Pyramid Network (BGFPN), and Smoothed Modified Penalized Distance 

Intersection over Union (SMPDIoU) loss to improve detection. It achieved mAP@0.5 scores of 95.11% 

Remote Sensing Object Detection (RSOD), 93.05% (NWPU VHR-10), and 53.49% (VisDrone2019), and 

mAP@0.5:0.95 scores of 72.03%, 65.37%, and 38.91%, respectively. Nie et al. [16] improved 

YOLOv8n's small object detection by adding a specialized layer, using the Selective Small Feature Fusion 
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(SSFF) module, and replacing the Path Aggregation Network with Hierarchical Path Aggregation 

Network (HPANet). This resulted in substantial mAP gains (14.3%/17.9% for mAP@0.5, 17.1%/19.8% 

for mAP@0.5:0.95 on VisDrone and AI Tiny Object Detection (AI-TOD) datasets, while reducing 

parameters by 33% and model size by 31.7%, demonstrating effective small object detection. 

 

Radionov et al. [17] improved the detection of aircraft in high-resolution satellite imagery. It used deep 

neural networks (YOLOv8m) with a novel sequential boundary traversal algorithm for contour detection. 

Preprocessing of images from the HRPlanesv2 dataset to highlight object boundaries and its combination 

with raw data, the method achieved higher accuracy: mAP@50 95 of 0.864. This represents a 1% and 

4.8% improvement over baseline, showing high proficiency for aircraft identification. To sum up, Table 

1 summarizes the recent YOLOv8-based object detection enhancements . 

 

 
Table 1 Overview of recent YOLOv8-based object detection methods, their key techniques, datasets, and accurate results. 

 

Authors Methodology Dataset Accuracy 

Yu et al. [9] 

 

YOLO-SRBD: YOLOv8 with shuffle 

reparameterized blocks, dynamic head, soft 

NMS for enhanced ship detection in SAR 

imagery. 

SAR Ship Detection 

Dataset (SSDD) 

Average Precision: 74.3% 

(improved from 66.7% 

YOLOv8) 

Khalili et al. [10] SOD-YOLOv8: YOLOv8 enhanced with 

GFPN-inspired multi-level feature fusion, 

additional high-res detection layer, multi-

scale attention module, and PIoU. 

High-altitude images 

dataset 

Recall: 43.9%, Precision: 

53.9%, mAP@0.5: 45.1% (all 

improved over YOLOv8s) 

Mostafa et al. 

[11] 

Transfer learning fine-tuned YOLOv5, 

YOLOX, Faster R-CNN on new occluded 

road scenes dataset to improve detection 

under occlusion. 

New occluded road 

scenes dataset 

(Bangladesh driving 

conditions) 

YOLOX best: mAP@0.5:0.95 

= 63.4% 

Shen et al. [12] DS-YOLOv8: YOLOv8 + Deformable 

Convolution (DCN_C2f), Self-Calibrating 

Shuffle Attention, Wise-IoU, position 

regression loss. 

Various public 

datasets 

mAP@0.5:0.95 scores: 74.0%, 

64.3%, 70.7%, 51.1% 

Zhai et al. [13] Optimized YOLOv8 for tiny UAV 

detection: high-res head, removed layers, 

SPD-Conv, Global Attention Module. 

Multiple datasets Precision +11.9%, Recall 

+15.2%, mAP +9%, parameters 

reduced by ~60% 

Magdy et al. [6] Comparative study of backbones (ResNet-

50, ResNeXt50_324d, EfficientNet_B0, 

DenseNet121) for remote sensing object 

detection. 

NWPU VHR-10 

dataset 

Best backbone 

ResNeXt50_324d: mean AP = 

84.7% 

]4[1 Zhang et al. HSP-YOLOv8: YOLOv8 with extra 

prediction head, SPD-Conv, Soft-NMS for 

small object detection in drone aerial 

images. 

VisDrone2019 dataset mAP@0.5: 49.6%, 

mAP@0.5:0.95 gain up to 11% 

and 9.8% over YOLOv8 

variants 

Yao et al. [15] HP-YOLOv8: uses C2f-DM module, Bi-

directional GFN, SMPDIoU loss for remote 

sensing small object detection. 

RSOD, NWPU VHR-

10, VisDrone2019 

datasets 

mAP@0.5: 95.11%, 93.05%, 

53.49%; mAP@0.5:0.95: 

72.03%, 65.37%, 38.91% 

Nie et al. [16] Improved YOLOv8n with selective small 

feature fusion, hierarchical path aggregation 

network, and specialized detection layer. 

VisDrone, AI Tiny 

Object Detection (AI-

TOD) datasets 

mAP@0.5 gains: 

+14.3%/17.9%, 

mAP@0.5:0.95: 

+17.1%/19.8%, parameter 

reduction 33% 
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Radionov et al. 

[17] 

YOLOv8m + sequential boundary traversal 

algorithm for aircraft detection in high-res 

satellite images with preprocessing. 

HRPlanesv2 dataset mAP@50–95 = 86.4%, +1% 

and +4.8% improvement over 

baseline 

 

3. Methodology 

 

YOLOv8 overall architecture, depicted in Figure 1, is composed of a Backbone, a Neck, and a Head, a 

common design pattern for one-stage object detectors [18]. The sub-sections below discuss the 

components of YOLOV8 in detail.  

 

 

Figure. 1: The architecture of YOLOv8 

 

3.1. Backbone Layer 

 

The YOLOv8 architecture critically relies on its Convolutional Neural Network (CNN) backbone for 

feature extraction, specifically leveraging an enhanced Cross Stage Partial Darknet 53 (CSPDarknet53). 

This backbone integrates cross-stage partial connections to optimize inter-layer information flow and 

improve detection accuracy. The  Key components of the backbone include: 1) The Convolution + 

BatchNorm + SiLU (CBS) module: This module, an evolution from the traditional Convolution + 

BatchNorm + Leaky ReLU (CBL), combines a 3x3 convolution, batch normalization, and the Sigmoid 

Linear Unit (SiLU) activation function.2) The C2f module: Replacing the C3 module from YOLOv5, C2f 

is a hybrid structure derived from C3 and Efficient Layer Aggregation Networks (ELAN), incorporating 

gradient shunt connections. This design significantly enhances information flow and contributes to a 

substantial improvement in detection accuracy. 3) The Spatial Pyramid Pooling – Fast (SPPF) module: 

Positioned at the terminal end of the backbone, the SPPF module processes features through a sequential 

application of three 5x5 MaxPool operations, followed by concatenation. This mechanism facilitates 

robust object detection across a diverse range of scales while preserving computational efficiency. [19]. 
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3.2. Neck Layer 

 

The YOLOv8 neck, also called a feature extractor, plays a crucial role in YOLOv8 by aggregating feature 

maps from the backbone's various stages to facilitate multi-scale feature integration [4]. YOLOv8's neck 

leverages a PAN-FPN architecture, integrating FPN and PAN to combine feature maps from various 

scales. This architecture, featuring upsampling, C2f modules, and a YOLOx-derived decoupled head, 

enhances the fusion of feature layer information, boosting detection accuracy [20]. 

 

3.3. Head Layer 

 

YOLOv8's head takes feature maps from the backbone and generates the final output: bounding boxes 

and object classes. It uses multiple detectors at different scales to predict bounding box coordinates, 

objectness scores, and class probabilities, optimizing accuracy by specializing each scale-specific branch 

for different object sizes [4]. Upsample (U) layers enhance feature map resolution, while a sequence of 

convolutional layers followed by a linear layer predicts bounding boxes and class probabilities efficiently 

[8]. YOLOv8's head utilizes a decoupled structure, separating object classification and bounding box 

regression. It incorporates the Anchor method and employs distinct loss functions, including Binary 

Cross-Entropy (BCE) for classification as defined in Eq. (1) [21]. For bounding box regression, it uses 

Distribution Focal Loss (DFL) with Complete Intersection over Union (CIoU), as shown in Eqs. (2) [22] 

and (3) [21]. These components enhance detection accuracy and accelerate model convergence [19]. 

 

                                 𝑳𝒐𝒔𝒔𝑩𝑪𝑬 =  −𝑾[𝒚𝒏 𝐥𝐨𝐠 𝒙𝒏 + (𝟏 − 𝒚𝒏) 𝐥𝐨𝐠(𝟏 − 𝒙𝒏)]                             (1) 

where w represents the weight; 𝒚𝒏 presents the actual value, and 𝒙𝒏 represents the predicted value 

generated by the model. 

                          𝑳𝒐𝒔𝒔𝑫𝑭𝑳 =  − [(𝒚𝒏+𝟏 − 𝒚) 𝐥𝐨𝐠
𝒚𝒏+𝟏−𝒚

𝒚𝒏+𝟏−𝒚𝒏
+ (𝒚 − 𝒚𝒏) 𝐥𝐨𝐠 (

𝒚−𝒚𝒏

𝒚𝒏+𝟏−𝒚𝒏
)]                (2) 

                                               𝑳𝒐𝒔𝒔𝑪𝑰𝒐𝑼 =  𝟏 − 𝑰𝒐𝑼 +
𝒅𝟐

𝒄𝟐 +  
𝒗𝟐

(𝟏−𝑰𝒐𝑼)+𝒗
                                      (3)  

where v is a parameter that measures aspect ratio consistency (defined in Eq. 4 [21]), IoU represents the 

overlap between predicted and ground truth boxes, 'd' is the Euclidean distance between their centers, 

and 'c' is the diagonal of the smallest box enclosing both. 

                                        𝒗 =  
𝟒

𝝅𝟐
(𝒂𝒓𝒄𝒕𝒂𝒏

𝒘𝒈𝒕

𝒉𝒈𝒕
− 𝒂𝒓𝒄𝒕𝒂𝒏

𝒘𝒑

𝒉𝒑
)

𝟐

                                    (4) 

where w represents the bounding box width, h represents the bounding box height, gt refers to the 

ground truth (actual) value, and p refers to the predicted value. 

 

The primary distinction among different variants of YOLOv8 lies in their size and complexity. Larger 

and more complex models offer higher accuracy but operate at slower speeds, whereas smaller and 

simpler models have less accuracy for faster processing. For instance, YOLOv8n has a size of 2.4 MB 

with 4.7 million parameters, while YOLOv8m, with a size of 8.1 MB and 20.0 million parameters, focuses 

on achieving higher accuracy despite its increased computational demands [8]. 

 

4. Experimental Results 

 

This section presents the experiments conducted on YOLOv8 assessment on Ship dataset. Section 4.1 

briefly describes the Ship benchmark dataset. Section 4.2 describes the experiment setup. Section 4. 
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highlights the evaluation metrics. Finally, section 4.4 highlights YOLOv8's advancements and its 

effectiveness compared to its versions. 

 

4.1. Dataset 

 

The Ship dataset [23] comprises images sourced from Google Earth, with a 30 to 50 cm resolution. The 

images predominantly feature ships and boats against a vast ocean background, although some show 

vessels near the shore or in clusters. The dataset contains 556 images for training (70%), 159 for validation 

(20%), and 79 for testing (10%). Three augmentations suitable for aerial imagery were applied for the 

training images: a horizontal flip and a 2×rotation. This process tripled the number of training images to 

around 1,400 and increased the number of ship dataset images to 1638. Additionally, all images were 

resized to 640×640 pixels to match the input requirements of the YOLOv8 model, as shown in the Figure. 

2. Technically, a ship detection dataset was selected over more complex multi-class datasets to facilitate 

focused, single-class evaluation of various YOLOv8 model variants namely: YOLOv8n, YOLOv8s, 

YOLOv8m, and YOLOv8l. This choice allows for controlled and consistent comparisons across models. 

Moreover, ship detection in aerial and satellite imagery poses unique challenges, including variations in 

viewpoint, occlusions, cloud cover, shadows, lighting inconsistencies, and the visual complexity of 

maritime backgrounds (e.g., wave patterns and color gradients). These characteristics make the ship 

detection dataset a compelling benchmark for evaluating the robustness, adaptability, and real-world 

applicability of YOLOv8 variants in remote sensing tasks. 

 
 

 

 

 

 

 

 

 

 

Figure. 2: Samples of the Ship dataset. 

 

4.2. Experimental Setup 

 

To ensure consistency and fairness in model comparison, all YOLOv8 variants (YOLOv8n, YOLOv8s, 

YOLOv8m, and YOLOv8l) were trained under an identical experimental environment. The training 

process utilized the AdamW optimizer, configured with a learning rate of 0.002, a momentum factor of 

0.9, a batch size of 16, and a weight decay coefficient of 0.0005. 

All experiments were conducted on the Google Colab platform, leveraging an NVIDIA Tesla T4 GPU 

equipped with 16 GB of dedicated GPU memory. The system environment included 13 GB of system 

RAM and 80 GB of available disk space. This setup ensured adequate computational resources for 
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training deep learning models while also reflecting a commonly accessible platform for practical research 

and experimentation. The use of a consistent hardware and software configuration across all model 

variants helped to isolate the effect of model architecture on performance outcomes. 

 

4.3. Evaluation Metrics 

 

The performance of the YOLOv8 model was assessed using a comprehensive set of evaluation metrics, 

including precision, recall, F1-score, Average Precision (AP), and mean Average Precision (mAP), as 

defined in Equations (5), (6), (7), (8), and (9) [24] respectively. In addition to these performance 

indicators, the evaluation also considered computational factors such as the number of model parameters, 

total model size, and training time.  

 

                                                                 𝑷 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
                                                                             )5 ( 

                                                                     𝑹 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
                                                                              )6(   

                                                     𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 = 𝟐
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∗𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝒂𝒏𝒅 𝑹𝒆𝒄𝒂𝒍𝒍
                                                       )7 ( 

                                 𝑨𝑷 =
𝟏

𝟏𝟏
∗ 𝑺𝒖𝒎(𝟏𝟏 𝒑𝒐𝒊𝒏𝒕 𝒊𝒏𝒕𝒆𝒓𝒑𝒐𝒍𝒂𝒕𝒆𝒅 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏)                                    )8) 

                                                          𝒎𝑨𝑷 =
𝟏

𝒏
∗ 𝒔𝒖𝒎(𝑨𝑷)                                                                 )9 ( 

where TP is the (True Positives) representing correctly identified positive cases, FP is the  (False 

Positives) representing negative cases incorrectly identified as positive, and FN is the (False Negatives) 

representing positive cases incorrectly identified as negative. 

 

4.4. Results 

 

This section investigates the performance of different YOLOv8 model variants on a single-class ship 

detection dataset. The evaluation focuses on both accuracy and computational efficiency, using metrics 

such as precision, recall, F1-score, average precision (AP), number of model parameters, model size, and 

training time. 

 

First, Figure 3 depicts the training and validation loss curves for YOLOv8 variants: (a) YOLOv8n, (b) 

YOLOv8s, (c) YOLOv8m, and (d) YOLOv8l, consistently decrease, indicating effective learning across 

all models. Larger models (YOLOv8m, YOLOv8l) start with slightly higher training losses but ultimately 

achieve lower final values. Validation losses drop sharply initially before stabilizing, with YOLOv8m 

and YOLOv8l reaching lower final values. In comparison, YOLOv8n and YOLOv8s exhibit smoother 

but slightly higher validation losses. The validation/classification loss (the box loss, cls loss, and dfl loss 

curves) decreases significantly for YOLOv8m and YOLOv8l, highlighting their enhanced learning 

capability. 

 

Next, Table 2 presents a comparison of different YOLOv8 variants:   Nano (YOLOv8n), Small 

(YOLOv8s), Medium (YOLOv8m), and Large (YOLOv8l) based on Recall, Precision, F1-Score, 

mAP50-95, Training Time, and Number of Parameters. Among them, YOLOv8s demonstrates the best 

balance of accuracy and efficiency, achieving the highest Recall (90.1), Precision (92.3), F1-score (96.3), 

and mAP50-95 (70.4). YOLOv8n is the most lightweight model, with the smallest parameter count 

(3.2M) and shortest training time (0.736 hours), making it ideal for resource-constrained environments, 
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though with slightly lower accuracy. In contrast, YOLOv8m and YOLOv8l have significantly larger 

parameter sizes (25.9M and 43.7M, respectively) and require more training time but do not show 

substantial improvements over YOLOv8s in key performance metrics like mAP50-95. Notably, 

YOLOv8l achieves the highest precision (93.0) but has a lower mAP50-95 (67.2), indicating a trade-off 

between precision and overall detection performance. The trade-off between precision and recall for each 

version of YOLOv8 is depicted in Figure 4. 
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Figure. 3: The training and validation loss (a) yolov8n, (b) yolov8s, (c) yolov8m, and (d) yolov8l. 

 
.v8 versionsOLOin Y Comparison of Efficiency Gains 2Table  

 

Model Recall Precision F1-Score mAP50-95 Time (Hr) # Parameter (M) 

YOLOv8n 88.6 90.3 95.0 69.0 0.736 3.2 

YOLOv8s 90.1 92.3 96.3 70.4 0.836 11.2 

YOLOv8m 89.1 91.1 77.9 68.7 1.423 25.9 

YOLOv8l 88.8 93.0 81.4 67.2 2.317 43.7 

 

 

 
 

Figure. 4: Precision-recall curve of the (a) yolov8n, (b) yolov8s, (c) yolov8m, and (d) yolov8l 

 

Finally, Four Precision-Recall curves (a, b, c, and d) were examined to understand the trade-off between 

precision (accuracy of positive predictions) and recall (ability to find all actual positives) in classification 

models.  Curves (a) and (c) show strong, consistent performance, maintaining high precision (above 0.8) 

across a wide range of recall values.  Curves (b) and (d), however, reveal more variability. Curve (b) 

demonstrates a sharp drop in precision after a recall of 0.8, suggesting decreasing accuracy as more true 
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positives are targeted.  Curve (d) shows a more gradual decline in precision, starting at a recall of 0.6, 

followed by a steeper drop at higher recall. These variations, even potentially within similar experimental 

conditions, highlight the importance of comprehensive evaluation, as model performance is sensitive to 

subtle changes. Samples of the obtained results of the YOLOv8s are shown in Figure 5. 

 

 

Figure. 5: Samples of the obtained results of the YOLOv8s for the ship dataset  

 

5. Conclusion  

 

Object detection plays a critical role in a variety of remote sensing applications, including agriculture, 

environmental monitoring, and urban planning. However, manual image analysis is often time-

consuming and inefficient. Automated object detection, therefore, is essential for extracting accurate and 

timely information from complex imagery. YOLOv8, a one-stage deep learning model, addresses this 

need by employing a single neural network to concurrently predict object locations (bounding boxes) 

and classifications (class probabilities). The model is available in several pre-trained variants 

(YOLOv8n, YOLOv8s, YOLOv8m, and YOLOv8l) offering a different balance between speed, 

accuracy, and computational efficiency. 

 

This study systematically evaluated the performance of various YOLOv8 models in the context of remote 

sensing, specifically for ship detection tasks. The architecture of YOLOv8 comprises three main 

components: the Backbone for feature extraction, the Neck for multi-scale feature fusion, and the Head 

for final object prediction. Experimental results using the Ship dataset highlight that YOLOv8s achieves 

the most favourable balance, attaining a high F1-score of 96.3% and a mAP50-95 of 70.4%, making it 

well-suited for deployment on resource-constrained systems. While YOLOv8n demonstrated the fastest 

training time and smallest model size, its detection performance was marginally lower. Conversely, 

YOLOv8m and YOLOv8l, despite requiring more computational resources and training time, did not 

yield significant improvements over YOLOv8s. Notably, YOLOv8l achieved the highest precision but 

recorded a lower mAP50-95, illustrating the nuanced trade-offs between performance metrics. In Future, 

we will enhance YOLOv8's performance in complex situations through domain adaptation and 

multispectral data integration. Pruning and quantization methods could improve edge device 
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applicability. Broader tests with other datasets and real-time applications can further validate and extend 

its applications to remote sensing. 
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