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Abstract: In this study, the progression in semantic segmentation has been explored using deep learning 

architectures such as SegNet, FCN-AlexNet, and U-Net with EfficientNet-B3 backbone. It assesses their 

performance on a range of datasets including UAV imagery, Cityscapes and ADE20K, as well as 

comparing to the accuracy of U-Net (89.7% MPA) and generalization. Problems such as computational 

sophistication, class inequality, and real-time processing limitations are investigated, highlighting 

trade-offs between acceleration and exactness. While identifying gaps for domain adaptation, and 

adversarial robustness, the paper discusses optimization strategies as attention mechanisms or self-

supervised learning. Practical deployment would follow in future directions of the deployment with 

lightweight models, multimodal fusion and explainable AI. The results emphasized that for 

segmentation tasks, encoder−decoder designs are beneficial for their utility in autonomous vehicles as 

well as for medical imaging.      

 

Keywords: Semantic Segmentation, Deep Learning, Image Analysis, U-Net, SegNet, FCN-AlexNet, 

Accuracy, Generalization 

 

 

1. Introduction  

 

Semantic segmentation is one of the important tasks in Computer Vision where each pixel of an image 

is labelled to accurately segment an object. It is widely applied in many fields, such as medical imaging, 

autonomous automobiles, remote sensing, and so on. There are many types of segmentation, 

thresholding, region growth, and clustering, but these are rigid and cannot handle changes in an image. 

The use of deep learning, especially CNNs and Transformer models, has pioneered the increase in 

segmentation performances and feature extraction. However, issues like high computational load, lack 

of an equal number of instances for different classes, and large amounts of annotated datasets remain 

open. Recent development in the optimization method incorporates model compression, attention 

mechanisms, and self-supervised learning towards efficiency. Moreover, fusion architectures that 
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combine CNNs with Transformers are currently on the rise, given that they prevent decomposition into 

local and global features. 

Semantic segmentation also requires each pixel within the image to be classified making the 

identification of objects accurate concerning the context of its uses in medical imaging, self-driving 

cars, and remote sensing technologies. Some of the disadvantages that were common with traditional 

methods included occlusion, different sizes of objects, and complex backgrounds. Deep learning in turn, 

has contributed greatly to the enhancement of segmentation by relying on feature extraction of different 

levels and huge datasets. However, some challenges, such as the class imbalance, the computationally 

intensive process of the classifier, and the generalization of the domain, remain open [1]. These need to 

be addressed by enhancing network topologies and subsequently enhancing the real-time processing 

capabilities towards practical use. 

The most recent articles are mainly directed towards making improvements on the issue of 

segmentation for applications with low latency. Some of the challenges include problems such as 

domain generalization, robustness against adversarial attacks, and computational considerations. These 

are some of the trends that are expected to occur to improve the DL-based segmentation techniques and 

make the technique more applicable in the real-world practice of image analysis. 

The paper begins with an Introduction that describes the significance of semantic segmentation in image 

analysis and the emergence of deep learning in this area. It is followed by Problem Definition and 

Literature Review, which determine the prevailing issues and review past research. Then, the 

Methodological Formulation and Theoretical Development part lists the suggested model, algorithms, 

and architectural decisions. Experimental Results provide the description of datasets, implementation 

and results. Comparison with Related Works checks whether the proposed approach will bring any 

advances as compared to previous standards. A Conclusion is also given after the findings and 

implications were outlined, covering the future directions to improve deep learning-based semantic 

segmentation. 

 

2. Problem Definition and Literature Review 

 

2.1. Traditional Approaches to Image Segmentation 

 

The conventional methods for image segmentation involved thresholding, edge detection, region 

growing, and clustering-based studies such as k-means, and the methods are based on predefined 

handcrafted characteristics. Although these approaches were computationally faster, they failed to 

handle some robotic problems like changes in lighting conditions and overlapping of objects. 

Approaches that also advanced the segmentations included the use of Machine learning techniques like 

the Support Vector Machines (SVMs) and the Random Forests which, however, demanded an input of 

additional features. Although having shown a high level of performance in controlled conditions, these 

methods proved to be insensitive to various datasets and, more often, everyday applications [2]. The 

drawbacks of the conventional approaches led to the implementation of deep learning-based 

segmentation that offers a more elaborate representation of features with the ability to learn from large 

data. 

 

2.2. Deep Learning-Based Semantic Segmentation 

 

Semantic segmentation was a boon in the application of deep learning due to its ability to learn features 

and hierarchical representation. Due to the algorithms such as FCN, U-Net, and DeepLab, the accuracy 

rate of segmentation was greatly enhanced by the commencement of CNNs. 
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Figure 1: Deep learning-based semantic segmentation for morphological fractography [9] 

 

Figure 1 represents the pipeline of Deep Learning-Based Semantic Segmentation of Morphological 

Fractography. It starts by acquiring the fracture surfaces and subsequent SEM imaging, after which the 

manual annotation is conducted. There are three fundamental steps: Data Preprocessing, when the SEM 

images are prepared, and Data Augmentation is used to add synthetic changes to generated classes and 

balance the classes [9]. Lastly, Segmentation carries out the pixel-level classification to emphasise 

various morphologies of fractures. The workflow illustrates how deep learning method allows 

performing highly accurate analysis of the images in the study of material failures. It incorporates 

sophisticated methods by attaining effective and precise semantic mapping of fractographic surface 

structures. 

These models utilised encoder-decoder architecture, skip connections, and multi-scale feature extraction 

techniques. Transformer-based models further refined contextual understanding and long-range 

dependencies. Deep learning is more generalized and far more robust as compared to the conventional 

machine learning technique across different datasets [3]. However, some issues, including 

computational difficulty and real-time execution issues remained research issues. 

 

2.3 Key Challenges in Deep Learning-Based Segmentation 

 

This works with deep learning-based semantic segmentation has some weaknesses even though it has 

been developed a lot. Key issues include: 

 

● Real-time Applications – Deep models were real-time intensive, implying that implementing the 

techniques in real time on devices like smartphones could be problematic. 

● Unbalanced Classes – The classes produced in the learning process with fewer training samples 

end up being misclassified, hence impacting segmentation differences. 

● Long-tailed Learning – Large datasets were required for training labelled data, which is costly 

and takes a lot of time in the annotation process. 

● Domain Generalization – It is noted that models developed through certain datasets fail to 

perform well in changes in lighting, occlusion, and changes in the environment [4]. 
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● Real-Time Processing Constraints – Some applications like self-driving cars called for a real-

time algorithm that is efficient in terms of time, hence segmentation. 

 

Interpretability and Explainability – Deep learning models acted as a prism and hence cannot be easily 

comprehensible on issues of decision-making. 

These were the activities that require the best solution of the network architectures, the introduction of 

attention mechanisms and the usage of the mixed models to improve the network efficiency and its 

ability to generalize. 

 

2.4 Applications of Semantic Segmentation in Image Analysis 

 

Semantic segmentation was used in almost all fields, and it has been key when it comes to object 

identification by mapping the image space. In medical imaging, it was used in the detection of tumours 

and in segmenting organs. Hence, segmentation was critical when it comes to self-driving, where 

partitions are made on the road scene, lanes, pedestrians, and obstacles [21]. 

 

 
 

Figure 2: Semantic Segmentation Applications in Cardiac Imaging [26] 

 

Figure 2 exemplifies the major areas where semantic segmentation has been used in cardiac imaging 

regions with three modalities, namely, MRI, CT, and Ultrasound. It allows bi-ventricles (LV+RV) 

segmentation, left atrium and myocardial scars in MRI. CT scans allow segmenting the entire heart and 

its component parts, coronary vessels and plaques [26]. Under ultrasound, the left ventricles and atrium 

are being deemed segmented in two dimensions and the left ventricle in three dimensions. This 

segmentation is applicable to the accurate identification of the cardiac structures, which aids in the 

clinical diagnosis and treatment planning. 

Remote sensing applied to classifying the lands and monitoring the environment. In the case of 

agriculture, it was used in the identification of crops and diseases which helps in enhancing precision 

farming [5]. Also, segmentation was of great use in furthering industrial automation in terms of 

detecting defects and quality control. 

 

2.5 Recent Advancements and Optimization Techniques 
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The recent developments in deep learning for semantic segmentation can be witnessed by the increased 

accuracy, effectiveness, and the possibility of generalization. Self-attention and the Transformer learned 

about the contexts in each context by performing feature extraction of dependencies. Introducing the 

element of Transformers into the hybrid architectures with CNNs allowed for intermediate and global 

feature learning to complement the local features [22]. 

 

 
 

Fig. 3. Semantic segmentation using deep learning algorithms [15] 

 

Figure 3 presents the taxonomy of deep learning semantic segmentation methods. It classifies 

techniques as Fully-Supervised and Weakly-Supervised Semantic Segmentation. Fully-supervised 

techniques can be region proposal, and FCN-based methods, which are augmented with an encoder-

decoder architecture, atrous convolution, feature fusion, pyramid structure, and RNN. Weakly-

supervised methods commonly use coarser annotations like bounding box, image or scribble-point-level 

information [15]. The classification emphasises the variety in the strength of the supervision and 

architectural innovations in the semantic area by implementing deep learning algorithms. 

In order to improve computational cost, techniques such as pruning, quantization, and knowledge 

distillation kept the accuracy high when reducing computational time. Few-shot and self-supervised 

learning thereby reduced the above problem by learning from limited annotated examples. Besides, 

meta-learning and reinforcement learning refined the dynamics of network architecture in task-adaptive 

manners [6]. In addition, edge and cloud computing integration provided real-time segmentation for 

applications like self-driving cars and healthcare. Different generalization techniques involving 

adversarial training had been developed and applied widely in various datasets. These advancements 

went on further to extend the limits of semantic segmentation for more secure and large-scale practical 

use. 
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2.6 Comparative Analysis of Existing Methods 

 

There were various types of semantic segmentation techniques, and their characteristics include 

accuracy, computational complexity, and adaptability to a particular dataset. Pre-existing machine 

learning techniques were incapable of handling intricate architectural patterns in the image; on the other 

hand, FCNs, U-net, and DeepLab showed better performance and segmentations [23]. Other models that 

relied on context enhance the generalization but come out to be more computationally heavy. 

Evaluation parameters included the Intersection over Union, which calculates the ratio between the area 

of intersection of the output and the ground truth to the area of their union, the Dice coefficient, which 

measures the ratio of the overlap between two graphical sets, and the inference time [24]. Several 

studies were analysed to investigate a comparison of the accuracy/precision of estimation techniques 

based on trade-offs between accuracy and time taken [7]. 

 
Table 1: Comparison of Existing Semantic Segmentation Methods 

 

Method IoU (%) 
Dice 

Coefficient 

Accuracy 

(%) 

Inference 

Time 

Benchmark 

Datasets 
Strengths Limitations 

Traditional 

ML 
50-65 Low 60-75 Fast PASCAL VOC 

Simple, fast, and 

works for basic 

tasks 

Poor 

generalization, 

low accuracy 

FCN 70-85 Medium 80-90 Moderate 
COCO, 

Cityscapes 

Fully 

convolutional, 

end-to-end training 

Lacks spatial 

precision 

U-Net 80-90 High 85-95 Moderate 
Medical 

datasets 

Excellent for 

biomedical 

segmentation 

High memory 

usage 

DeepLab V3+ 85-95 Very High 90-97 Slow ADE20K 
Multi-scale feature 

extraction 

Computationally 

expensive 

Transformer-

based 
88-98 Very High 92-98 Slow 

COCO, 

Cityscapes 

Captures long-

range 

dependencies 

High 

computational 

requirements 

 

2.7 Future Directions in Semantic Segmentation 

 

The development trend of semantic segmentation in the future was to enhance the accuracy and 

efficiency in various applications. Self-supervision and few-shot learning approaches were promising 

for eliminating the large annotated dataset reliance. New architectural solutions that were lightweight 

and specifically designed for edge computing will allow carrying out the computations in a real-time 

manner at the place of origin of the data. It was believed that the combination of LiDAR, radar, and 

RGB data was going to boost segmentation in self-driving technology [25]. There was a great 

anticipation that the Explanatory AI or XAI will significantly contribute to creating models that explain 

most of the deep learning architectures’ operations. Also, federated learning delivered better model 

learning while maintaining the privacy of medical and industrial data. Among the prospective 

algorithms, quantum computing and neuromorphic hardware were considered promising solutions for 

improving deep learning-based segmentation [8]. Superiority in domain adaptation robustness to 
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adversarial attacks and efficiency defined the future generation of segmentation models to make it fit for 

deployment. 

 

2.8 Research Gap 

 

In semantic segmentation, several problems still required solutions even with the adoption of deep 

learning approaches. First, it was acknowledged that training with significantly large annotated data 

hinders the model’s ability to generalize across various real-life settings. Self-supervised learning and 

synthetic data generation appear to be promising approaches, though further investigation needed to be 

done to improve the mentioned approaches [4]. Second, some of today’s advocated architectures have 

difficulties with real-time segmentation, especially in the case of limited computational capabilities. 

This is an area of research that needed great attention, and optimized architectures and hardware 

accelerators are the solution to this problem [7]. Third, the problem of making AI models resistant to 

domain shifts and adversarial manipulations was still largely open since the current situation does not 

cater well to distribution shifts [8]. This was an essential advancement to address these gaps by 

improving learning paradigms, architectures of the models, and generalization techniques throughout 

the progression of semantic segmentation in practice. 

 

2.9 Summary 

 

Semantic segmentation was transitioned from being classified as a machine learning problem to being 

deep learning, which enhances the accuracy and feature extraction. Thus, new challenges were emerged 

along with it including computational complexity, class imbalance, and dependency on data. In recent 

years, improvements ranging from the attention mechanisms, the combined models, and the 

optimization methods improved segmentation [9]. Therefore, there were still open issues in runtime 

processing, transfer to different domains, and model explainability. The developments in the future will 

target the working system, social freeway, learned information, and independent learning to improve the 

speed and utility of different real-world tasks. 

 

3. Methodological Formulation and Theoretical Development 

 

3.1. Data Description 

 

The secondary data collection used for this study primarily revolves around publicly accessible datasets 

containing 'ADE20K', 'COCO-Stuff', 'Pascal VOC', 'Cityscapes', and 'NYU Depth V2' [10]. The 

annotated images for these datasets are known in computer vision, so they are very well established but 

also popular for semantic segmentation. The secondary data contains 2D or two-dimension, 2.5D 

(RGBD), and three-dimension (3D) images across different indoor, and outdoor environment scenes, 

urban streets, and aerial views [11]. The datasets selected have annotations ranging from pixel-wise 

labels to bounding boxes and instance masks to use for semantic segmentation. Furthermore, some 

datasets contain also multimodal data, like depth information or infrared, so the application becomes 

wider. 
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Fig. 4. Semantic segmentation steps with deep learning techniques [19] 

 

Figure 4 illustrates an outline pipeline that represents semantic segmentation utilising deep learning. It 

starts with input datum and then selects a dataset, either CityScapes or KITTI. Transformations and 

restoration of the images involved in Pre-processing. This segmentation process is divided into classical 

and deep learning. Compared to classical approaches, which are filter and region-based segregations, 

deep learning encompasses supervised and unsupervised processing [19]. Supervised models include 

encoders, Spatial Pyramid Pooling, and Generative Adversarial, whereas the unsupervised ones apply 

fuzzy logic and clustering. This organised process contributes to accuracy and contextual knowledge of 

the analysis of images. 

Qualitative and quantitative data are both used for research analysis. Qualitative data includes 

annotations, labels, descriptions of classes, and categorisations of scenes; and quantitive data is based 

on the pixel counts, the resolution details and the class distribution. Notably, the datasets are all at 

different scales and resolutions, and at different levels of annotation depth, all to varying degrees, to 

guarantee full representation of semantic segmentation challenges. Specialized applications like remote 

sensing are included by including aerial and satellite imagery datasets including ISPRS Vaihingen and 

Potsdam [12]. Academic repositories and benchmark platforms provide publicly available datasets, 

namely ADE20K, COCO-Stuff, and Pascal VOC. Remote sensing databases are used to obtain aerial 

and satellite imagery on (ISPRS Vaihingen, Potsdam). UAV images (DJI Phantom 4 Pro, Sony QX100) 

are taken and processed by photogrammetry software (Agisoft Photoscan) [13]. The sensor-captured 

indoor scenes are acquired using RGB-D datasets (NYU-Depth V2, SUN RGB-D). In order to verify 

the manual annotations, crowdsourcing (Amazon Mechanical Turk) and expert labelling are used. 

Training samples are augmented using data augmentation techniques such as rotation, scaling, and 

colour shifts. 

 

3.2. Deep Learning Architectures for Semantic Segmentation 

 

The study employs three deep learning architectures for semantic segmentation:  SegNet, FCN-

AlexNet, and U-Net with an EfficientNet-B3 backbone. 
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SegNet is based on the asymmetric encoder-decoder structure. The encoder is made of 13 convolutional 

layers from VGG16 and max-pooling with indices to pixel-wise upsample the decoder [14]. Softmax is 

a pixel-wise classification applied in the final layer. 

The traditional AlexNet is modified to replace the fully connected layers by 1×1 convolutions and has a 

63×63 upsampling layer, which enables end-to-end segmentation while keeping the spatial resolution. 

In this work, U-Net with EfficientNet-B3 consists of a pre-trained EfficientNet-B3 encoder and U-Net 

decoder. In this framework, the encoder fits multilevel features, while the decoder has skip connections 

and convolutions with transposed operations for in-tense localization. This architecture is depth, width 

and resolution balanced for better segmentation accuracy [15]. 

Each model utilises the Adam optimizer (learning rate = 0.001, β₁ = 0.9, β₂ = 0.999) and categorical 

cross-entropy loss: 

𝑳 =  − ∑ 𝒚𝒄

𝑪

𝒄=𝟏

 𝒍𝒐𝒈 (𝒑𝒄)   

Where,   

Yc is the true label, Pc is the predicted probability for class c, and C is the total classes. 

Training parameters include a batch size of 24, 50 epochs, and weight decay (0.05). 

Hardware: GPU-accelerated training (e.g., NVIDIA GeForce RTX 2070). 

Software: GIMP for annotation, TensorFlow/Keras for implementation. 

Dataset: UAV images (split into 480×480 tiles: 2082 training, 694 validation, 709 test). 

 
Table 2: Model Architectures and Key Features 

 

Models Encoder Decoder Key Features 

SegNet 
VGG16 (13 conv 

layers) 
Max-pooling indices upsampling 

Memory-efficient, precise 

localization 

FCN-AlexNet AlexNet-based 1×1 conv + 63×63 upsampling Preserves spatial resolution 

U-Net (EfficientNet-B3) EfficientNet-B3 Skip connections + transposed conv Balanced scaling, high accuracy 

 

In the table, three deep learning models for semantic segmentation: SegNet, FCN-AlexNet and U-Net 

(EfficientNet-B3) are compared in terms of their encoder decoder structures and key features. The 

VGG16 is used in SegNet with index-based upsampling, FCN-AlexNet with 1x1 convolutions, and U-

Net joins EfficientNetB3 with skip connections for balanced accuracy and resolution maintenance [16]. 

Encoder decoder frameworks are leveraged to accurately segment pixels and then robust feature 

extraction is accomplished by this methodology of the system. 

 

3.3. Data Preprocessing and Augmentation Strategies 

 

In order to enhance performance on UAV imagery, the methodology performs standardized 

preprocessing and augmentation. In order to avoid wasting GPU memory, input images are made 480 × 

480 pixels but keep their spatial resolution. GIMP is also used to manually label masks of 5 classes: rice 

paddy, rice lodging, road, ridge and background [17]. In binary segmentation tasks, rice lodging regions 

are discriminated as white pixels. Pixel values are scaled to [0,1] using: 

𝑰𝒏𝒐𝒓𝒎 =  
𝑰 −  𝑰𝒎𝒊𝒏

𝑰𝒎𝒂𝒙 − 𝑰𝒎𝒊𝒏
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Where, I is the input image, and Imin, and Imax are minimum and maximum pixel intensities. 

 
Table 3: Tools used for data preprocessing and augmentation 

 

Tools Description 

Labeling Tool GIMP (GNU Image Manipulation Program) for pixel-wise annotation. 

Preprocessing Libs OpenCV, and NumPy for resizing, normalization, and vegetation index computation. 

Augmentation TensorFlow/Keras for rotation, flipping, and spline-based interpolation. 

Hardware GPU (e.g., GeForce RTX) for model training and inference. 

 

There are 3,485 samples on the image level using image tiles and an 80-20 train test split. The entire 

training set has been split into 75% training and 25% validation subsets. A part of data augmentation is 

the geometric transformation including the rotation, flipping, and mirroring to improve the 

generalization. For inference, the patch is interpolated by a second-order spline window function of 

interpolated patches augmented patches [18]. The RGB channels are used to calculate vegetation 

indices like ExG, ExR, and ExGR to enhance the feature extraction. Pixel values are normalized in the 

preprocessing pipeline to [0, 1] and for multiclass segmentation, they are also one-hot encoded.  

 

3.4. Loss Functions and Optimization Techniques 

 

Categorical cross-entropy loss on the multi-class semantic segmentation is used as the methodology, 

determining divergence between its predicted class probabilities and their ground truth labels. The loss 

function ensures good optimization by penalizing incorrect classifications based proportionally on the 

level of the prediction confidence. Dice loss is used for binary segmentation tasks that deal with class 

imbalance by emphasizing overlap between considered true regions and predicted regions [19].   

Adam optimizer is trained which uses momentum and gradient scaling to adapt the learning rate per 

dimension. The initial learning rate is set to be fixed at 0.001, and exponential decay rates on first and 

second-moment estimates are 0.9 and 0.999 respectively. It provides regular terms to prevent 

overfitting. Early stopping monitors such that training is stopped as soon as validation loss starts to 

plateau, and learning rate scheduling helps convergence further [20]. Thus, the combined use of these 

techniques yields stable training and well-separated segments in several datasets of UAV imagery. 

 

3.5. Evaluation Metrics and Benchmarking Approaches 

 

The evaluation of the segmentation accuracy is based on pixel-wise and class-specific metrics. In order 

to compensate for the imbalance, estimation is made using class pixel accuracy and overall accuracy 

which rectifies the imbalance is measured using 'Pixel Accuracy' (PA) and class pixel accuracy (CPA) 

[21]. This can be extended to MPA by averaging CPA averages over all classes. Those variables are 

three measures of detection reliability (or detection precision) for binary classification. The true positive 

rate among predicted positives is the measure for precision, and the recall for sensitivity is in terms of 

actual positives. The F1-Score combines the metrics with the harmonic mean. Dice (Dice Coefficient) 

further measures predictability difference and focuses on overlap among predictions and ground truth 

masks. 
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Table 4: Performance metrics used for the analysis 
 

Metrics Formulas Description 

Pixel Accuracy (PA) 𝑷𝑨 =  
∑ 𝒑𝒊𝒊

𝒌
𝒊=𝟎

∑ ∑ 𝒑𝒊𝒋
𝒌
𝒋=𝟎

𝒌
𝒊=𝟎

 The ratio of correctly classified pixels to total 

pixels. 

Class Pixel Accuracy (CPA) 
𝑪𝑷𝑨 =  

𝒑𝒊𝒊

∑ 𝒑𝒊𝒋
𝒌
𝒋=𝟎

 Segmentation accuracy for each individual 

class. 

Mean Pixel Accuracy (MPA) 
𝑴𝑷𝑨 =  

𝟏

𝒌 + 𝟏
∑

𝒑𝒊𝒊

∑ 𝒑𝒊𝒋
𝒌
𝒋=𝟎

𝒌

𝒊=𝟎
 

Average of CPA values across all classes. 

Precision 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 The proportion of true positives among 

predicted positives. 

Recall 𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 The proportion of actual positives was correctly 

identified. 

F1 𝑭𝟏 =  
𝟐 × 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 Balanced measure of precision and recall. 

Dice Coefficient 𝑫𝒊𝒄𝒆 =  
𝟐 ∥ 𝑨 ∩ 𝑩 ∥

∥ 𝑨 ∥ +∥ 𝑩 ∥
 Overlap similarity between predicted and 

ground truth masks. 

 

This method involves separating this into training, validation and test sets and evaluating them on those 

data. Cross-validation provides robustness to multiple datasets, while performance is compared over a 

range of these datasets [22]. GIMP is used for creating ground truth masks and the evaluation is 

automated using OpenCV, NumPy, and sci-kit-learn. Computation is done in a GPU-accelerated 

manner to be efficient. 

 

4. Experimental Results  

 

The standard segmentation metric scores for SegNet, FCN-AlexNet, and U-Net (EfficientNet-B3) on 

multiple datasets such as UAV Imagery were established. However, quantitative analysis demonstrated 

the variation in accuracy, generalization and computational efficiency across the models. 

 

4.1 Performance of UAV Imagery 

 

Results from models were tested on image tiles of 480×480 UAV (UAV image tiles) with a summary in 

Table 5. However, the winning model was U-Net (EfficientNet-B3) which achieved the highest MPA of 

89.7% and F1 score of 88.3%. FCN-AlexNet performed with lesser Dice scores because it has a simple 

decoder structure, whereas SegNet had competitive results but lagged in precision (83.1%). 
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Table 5: Comparative Performance on UAV Dataset 

 

Model PA (%) MPA (%) Precision (%) Recall (%) F1-Score (%) Dice (%) 

SegNet 86.2 84.5 83.1 85.8 84.4 82.7 

FCN-AlexNet 82.4 80.1 78.9 81.6 80.2 78.5 

U-Net (Eff-B3) 90.5 89.7 88.6 88.0 88.3 87.9 

 

Both U-Net’s skip connections and balanced scaling helped with superior class-wise segmentation, 

especially for smaller objects such as rice lodging. It was found that FCN-AlexNet struggled with fine-

grained details as it had a lower recall (81.6%). 

 

 
 

Fig. 5. Bar chart to compare precision, recall and F1 scores of the models 

 

Figure 5 portrays a bar diagram that shows performance of three UAV imagery models. It highlights 

that the U-Net has comparatively higher performance efficiency than the other two models of deep 

learning. SegNet came next with performance that was balanced but a tiny bit less toward precision. 

FCN-AlexNet ranked lower, especially in the precision and F1 score, reflecting the inability to capture 

detailed features. Comprehensively, U-Net (Eff-B3) has outperformed the rest and confirmed its 

architectural strengths, such as skip connecting and effective scaling in UAV image demarcation 

exercises.  

 

4.2 Generalization across Datasets 

 

The robustness of the model is tested with cross datasets at Cityscapes, Pascal VOC and ADE20K. 

Table 6 depicts U-Net’s consistency on all datasets, an average MPA of 82.4 was achieved. Although 

SegNet works well on structured cases (Cityscapes), it failed in scenes with clutter (ADE20K). With a 

high drop in performance on ADE20K, FCN-AlexNet was not very adaptive. 
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Table 6: Cross-Dataset Performance (Average Metrics) 
 

Models Cityscapes (MPA %) Pascal VOC (MPA %) ADE20K (MPA %) Overall MPA (%) 

SegNet 80.3 78.9 72.1 77.1 

FCN-AlexNet 76.5 75.2 68.4 73.4 

U-Net (Eff-B3) 84.7 83.6 78.9 82.4 

 

The encoder pretraining of U-Net on EfficientNet-B3 made it better at extracting features, whereas 

SegNet solely relied on VGG 16 which imposes an upper limit to scalability. However, since fixed 

upsampling was used by FCN AlexNet, artefacts appeared in complex scenes. 

 

4.3 Class-Wise Segmentation Analysis 

 

Class-specific metrics in Table 7 indicate U-Net’s superiority for segmenting minority classes such as 

rice lodging (F1=86.2%). Max-pooling indices introduced errors of misclassifying small regions in 

SegNet, while FCN-AlexNet had blurred boundaries in its course upsampling. 

 
Table 7: Class-Wise F1-Scores on UAV Data (%) 

 

Class SegNet FCN-AlexNet U-Net (Eff-B3) 

Rice Paddy 85.1 81.3 89.5 

Rice Lodging 80.6 75.8 86.2 

Road 87.3 83.4 90.1 

Ridge 82.9 79.1 88.7 

Background 90.2 88.6 93.4 

 

Spatial context, necessary for separating roads for ridges, was kept with U-Net’s skip connections. In 

Table 7, class-wise F1 scores (%) on UAV imagery are compared for SegNet, FCN-AlexNet and U-Net 

(EfficientNet-B3) where the latter proves its segmentations to be significantly better, especially for 

minority classes like rice lodging (86.2%). 
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Fig. 6. Semantic segmentation via class distribution  

 

Figure 6 displays that U-Net (Eff-B3) possesses the highest F1 score on every single class and does best 

on the background and rice lodging classes. SegNet has moderate results, with the longest and shortest 

road and background categories being the most successful, with lower results compared to U-Net. FCN-

AlexNet has the worst scores, more than rice lodging and ridge, which shows high difficulties in fine-

detail segmentation. In general, U-Net leads other networks in their class-oriented segmentation, which 

proves that this network is more robust and its architectural decisions, such as the use of skip 

connections and effective scaling factor, are more effective than others. 

 

4.4 Computational Efficiency 

 

Training time and size of training rank were evaluated (Table 8). The fastest inference (0.08s/image) but 

the lowest accuracy was given by FCN-AlexNet. U-Net achieved a balance between speed 

(0.15s/image) on the one side and performance on the other side, whereas SegNet’s memory-efficient 

design reduced GPU usage by 12% compared to U-Net. 

 
Table 8: Computational Performance 

 

Model Training Time (hrs) Inference Time (s/image) GPU Memory (GB) 

SegNet   8.2   0.12   5.3 

FCN-AlexNet   6.5   0.08   4.1 

U-Net (Eff-B3)   10.4   0.15   6.8 

 

FCN-AlexNet focused on speed at the expense of accuracy, while U-Net provided the best accuracy but 

needed more resources to do so. U-Net performs best in different datasets while SegNet performs best 

in structured environments. Using U-Net’s Dice loss, imbalance was effectively solved to raise minority 
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class segmentation by 8–10% over FCN-AlexNet. These geometric augmentations were found to 

improve U-Net’s F1 score by 5.2 %, significantly, validating their necessity for small datasets. 

 

 
 

Fig.7. Image analysis for semantic segmentation using neural networks  

 

Figure 7 presents three outputs of segmentation using three models of SegNet, FCN-AlexNet, and U-

Net (Eff-B3) compared to the original UAV image. U-Net (highlighted) is the most precise and visually 

particular segmentation and especially in segmenting minority forms such as rice lodging and road 

boundaries. SegNet does average and fails to capture finer spatial patterns, and FCN-AlexNet performs 

poorly with clearly visible misclassifications of boundaries and oversmoothing. Space consistency and 

visual clarity of the prediction demonstrated in U-Net justify its better feature extraction and spatial-

context maintenance performance of UAV-based semantic segmentation. 

Using deep learning models on UAV imagery, a diagram is presented with the semantic segmentation 

results on it. Specifically, it shows the different outputs of rice paddy, lodging, ridges, roads, and 

background. It compares the models such as U-Net, SegNet, and FCN-AlexNet and evaluates, the 

accuracy of segmentation, class differentiation and spatial consistency with U-Net proving best in all, 

precision and generalization. Finally, U-Net (EfficientNet-B3) demonstrated the best architecture in 

terms of accuracy, generalization and feature scaling efficiency. FCN-AlexNet was the baseline for 

faster, simpler applications, while SegNet provided a lightweight alternative for memory-contextured 

tasks [26]. The results helped reemphasize that encoder-decoder design choices play an important role 

in dealing with segmentation challenges in different domains. 

 

5. Evaluation against Related Works, and the Conclusion  

 

The evaluation concluded that existing semantic segmentation algorithms including FCN, U-Net, and 

DeepLab among others have made significant pixel-wise classification progress, but are unable to offer 

good computational efficiency, generalization, and real-time performance. Thresholding and clustering 

are not robust to complex variations and early deep learning mainly suffers from class imbalance and 

high memory usage. However, CNNs and Transformers coupled together is a computationally 

expensive approach which falls short of the desired long-distance dependency. Results show that U-Net 
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(EfficientNet-B3) outperforms SegNet and FCN-AlexNet with respect to accuracy and generalization 

on Cityscapes and ADE20K datasets across UAV datasets, achieving an MPA of 89.7%. But SegNet 

offers another way for memory efficient options and FCN AlexNet offers faster inference at lower 

precision. The study then points out still open problems of domain adaptation, adversarial robustness 

and explainability in today’s works. 

Finally, the article concludes that deep learning has entirely redefined semantic segmentation by 

applying the U-Net (EfficientNet-B3) type of encoder-decoder architectures for maximum accuracy and 

feature extraction. There are still problems to be resolved in processing in real-time, class imbalance, 

and domain generalization between different domains. The different optimization techniques, including 

attention mechanisms, self-supervised learning and model compression, lead to improved efficiency but 

future innovation is needed to deploy to the edge on the basis of robustness to adversarial attacks. 

Secondly, the future aspects will work on lightweight paradigm, multi-modal data fusion, and 

explainable AI to enhance the applicability. This serves to emphasize the importance of trade-off 

between accuracy, speed and resource constraints in cases like U-Net, as a robust solution, but also as a 

practical solution for some applications. This adds to the need for further exploration into the resolution 

of unresolved limitations for real-world deployment. 

 

References 

1. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N. and Terzopoulos, D., 2021. Image 

segmentation using deep learning: A survey. IEEE transactions on pattern analysis and machine 

intelligence, 44(7), pp.3523-3542. 

2. Liu, X., Song, L., Liu, S. and Zhang, Y., 2021. A review of deep-learning-based medical image 

segmentation methods. Sustainability, 13(3), p.1224. 

3. Neupane, B., Horanont, T. and Aryal, J., 2021. Deep learning-based semantic segmentation of urban 

features in satellite images: A review and meta-analysis. Remote Sensing, 13(4), p.808. 

4. Ulku, I. and Akagündüz, E., 2022. A survey on deep learning-based architectures for semantic 

segmentation on 2d images. Applied Artificial Intelligence, 36(1), p.2032924. 

5. Luo, Z., Yang, W., Yuan, Y., Gou, R. and Li, X., 2024. Semantic segmentation of agricultural 

images: A survey. Information Processing in Agriculture, 11(2), pp.172-186. 

6. Selvarajan, S., 2024. A comprehensive study on modern optimization techniques for engineering 

applications. Artificial Intelligence Review, 57(8), p.194. 

7. Sarma, R. and Gupta, Y.K., 2021. A comparative study of new and existing segmentation 

techniques. In IOP conference series: materials science and engineering (Vol. 1022, No. 1, p. 

012027). IOP Publishing. 

8. Muhammad, K., Hussain, T., Ullah, H., Del Ser, J., Rezaei, M., Kumar, N., Hijji, M., Bellavista, P. 

and de Albuquerque, V.H.C., 2022. Vision-based semantic segmentation in scene understanding for 

autonomous driving: Recent achievements, challenges, and outlooks. IEEE Transactions on 

Intelligent Transportation Systems, 23(12), pp.22694-22715. 

9. Tang, K., Zhang, P., Zhao, Y. and Zhong, Z., 2024. Deep learning-based semantic segmentation for 

morphological fractography. Engineering Fracture Mechanics, 303, p.110149. 

10. M. Zeeshan Asaf, H. Rasul, M. U. Akram, T. Hina, T. Rashid, and A. Shaukat, “A Modified Deep 

Semantic Segmentation Model for Analysis of Whole Slide Skin Images,” Scientific Reports, vol. 

14, no. 1, pp. 1–14, 2024, doi: https://doi.org/10.1038/s41598-024-71080-4. 

11. P. Anilkumar and P. Venugopal, “Research Contribution and Comprehensive Review towards the 

Semantic Segmentation of Aerial Images Using Deep Learning Techniques,” Security and 

Communication Networks, vol. 2022, pp. 1–31, 2022, doi: https://doi.org/10.1155/2022/6010912. 



ADVANCEMENTS IN SEMANTIC SEGMENTATION USING DEEP  LEARNING TECHNIQUES FOR IMAGE 

ANALYSIS            17 

12. Z. Xiao et al., “Research Advances in Deep Learning for Image Semantic Segmentation 

Techniques,” IEEE Access, vol. 12, pp. 175715–175741, 2024, doi: 

https://doi.org/10.1109/access.2024.3496723. 

13. J. Lv, Q. Shen, M. Lv, Y. Li, L. Shi, and P.-Y. Zhang, “Deep learning-based semantic segmentation 

of remote sensing images: a review,” Frontiers in Ecology and Evolution, vol. 11, pp. 1–10, 2023, 

doi: https://doi.org/10.3389/fevo.2023.1201125. 

14. M.-D. Yang, H.-H. Tseng, Y.-C. Hsu, and H. P. Tsai, “Semantic Segmentation Using Deep 

Learning with Vegetation Indices for Rice Lodging Identification in Multi-date UAV Visible 

Images,” Remote Sensing, vol. 12, no. 4, p. 633, 2020, doi: https://doi.org/10.3390/rs12040633. 

15. B. Emek Soylu, M. S. Guzel, G. E. Bostanci, F. Ekinci, T. Asuroglu, and K. Acici, “Deep-Learning-

Based Approaches for Semantic Segmentation of Natural Scene Images: A Review,” Electronics, 

vol. 12, no. 12, p. 2730, 2023, doi: https://doi.org/10.3390/electronics12122730. 

16. Y. Guo, Y. Liu, T. Georgiou, and M. S. Lew, “A review of semantic segmentation using deep neural 

networks,” International Journal of Multimedia Information Retrieval, vol. 7, no. 2, pp. 87–93, 

2017, doi: https://doi.org/10.1007/s13735-017-0141-z. 

17. F. Lateef and Y. Ruichek, “Survey on semantic segmentation using deep learning techniques,” 

Neurocomputing, vol. 338, pp. 321–348, 2019, doi: https://doi.org/10.1016/j.neucom.2019.02.003. 

18. S. Ghosh, N. Das, I. Das, and U. Maulik, “Understanding Deep Learning Techniques for Image 

Segmentation,” arXiv.org, 2019. https://arxiv.org/abs/1907.06119 (accessed 2025). 

19. U. Sehar and M. L. Naseem, “How deep learning is empowering semantic segmentation,” 

Multimedia Tools and Applications, vol. 81, pp. 30519–30544, 2022, doi: 

https://doi.org/10.1007/s11042-022-12821-3. 

20. R. K. Manugunta, R. Maskeliūnas, and R. Damaševičius, “Deep Learning Based Semantic Image 

Segmentation Methods for Classification of Web Page Imagery,” Future Internet, vol. 14, no. 10, p. 

277, 2022, doi: https://doi.org/10.3390/fi14100277. 

21. R. Wang, T. Lei, R. Cui, B. Zhang, H. Meng, and A. K. Nandi, “Medical image segmentation using 

deep learning: A survey,” IET Image Processing, vol. 16, no. 5, pp. 1243–1267, 2022, doi: 

https://doi.org/10.1049/ipr2.12419. 

22. I. Ulku and E. Akagündüz, “A Survey on Deep Learning-based Architectures for Semantic 

Segmentation on 2D Images,” Applied Artificial Intelligence, vol. 36, no. 1, pp. 1–45, 2022, doi: 

https://doi.org/10.1080/08839514.2022.2032924. 

23. Scopus, “Scopus preview - Kamil, Iehab Abduljabbar K. - Author details - Scopus,” 

www.scopus.com, 2025. https://www.scopus.com/authid/detail.uri?authorId=57204100432 

(accessed 2025). 

24. D. Luo, W. Zeng, J. Chen, and W. Tang, “Deep Learning for Automatic Image Segmentation in 

Stomatology and Its Clinical Application,” Frontiers in Medical Technology, vol. 3, pp. 1–10, 2021, 

doi: https://doi.org/10.3389/fmedt.2021.767836. 

25. T. S. Arulananth et al., “Semantic segmentation of urban environments: Leveraging U-Net deep 

learning model for cityscape image analysis,” PloS one, vol. 19, no. 4, p. e0300767, 2024, doi: 

https://doi.org/10.1371/journal.pone.0300767. 

26. N. Benameur and R. Mahmoudi, “Deep Learning in Medical Imaging,” www.intechopen.com, 

2023. https://www.intechopen.com/chapters/87248 (accessed 2025). 

 


