
IJICIS, Vol.25, No.1, 1-17

DOI: 10.21608/ijicis.2025.358362.1375

*Corresponding Author: Ali M Elsawwaf

Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt

Email address: 2002336@eng.asu.edu.eg

International Journal of Intelligent

Computing and Information Sciences

SCHEDULING MOTIF FINDING PROBLEM ACROSS HETEROGENEOUS CPU

ARCHITECTURES

Ali M Elsawwaf*

Computer and Systems Engineering Dept,

 Faculty of Engineering, Ain Shams University,

 Cairo, Egypt.

2002336@eng.asu.edu.eg

Gamal M Aly

Computer and Systems Engineering Dept,

 Faculty of Engineering, Ain Shams University,

 Cairo, Egypt.

gamal.aly@eng.asu.edu.eg

Hossam M Faheem

Computer systems Department,

 Faculty of Computer and Information Sciences, Ain

Shams University,

 Cairo, Egypt.

hmfaheem@cis.asu.edu.eg

Mahmoud Fayez

Computer systems Department,

 Faculty of Computer and Information Sciences, Ain Shams

University,

 Cairo, Egypt.

mahmoud.fayez@cis.asu.edu.eg
Received 2025-02-05; Revised 2025-02-05; Accepted 2025-03-09

Abstract: The Motif finding problem is important in bioinformatics, aiming to find recurring sequences in

biological data. These motifs, are important for understanding how genes work, how proteins function, and

how cells operate. Accurately detecting these patterns is essential for understanding of biology, aiding in

scientific research, and developing treatments for diseases. Addressing the motif finding problem efficiently

across heterogeneous CPU architectures presents significant challenges in computational efficiency and

resource utilization. The variation in the number and speed of cores across CPUs requires developing

scheduling strategies to efficiently distribute workloads among these architectures. This paper presents an

efficient strategy for optimizing task distribution across heterogeneous CPU architectures. The proposed

approach makes performance enhancement with 9 % solving Motif finding problem in CPU heterogeneous

architectures. This improvement significantly speeds up the process of identifying important biological

patterns, making bioinformatics research quicker and more cost-effective. In addition, it has a significant

impact on enhancing computational efficiency and reducing costs in high-performance computing

environments.

Keywords: Motif finding, Heterogeneous CPU architectures, Task distribution strategy

https://ijicis.journals.ekb.eg/

mailto:2002336@eng.asu.edu.eg
mailto:2002336@eng.asu.edu.eg
mailto:gamal.aly@eng.asu.edu.eg
mailto:hmfaheem@cis.asu.edu.eg
mailto:mahmoud.fayez@cis.asu.edu.eg

2 Ali M Elsawwaf et al.

1. Introduction

Motif finding problem (MFP) is a cornerstone of bioinformatics research with wide-reaching implications in

understanding biological systems, elucidating disease mechanisms, and guiding therapeutic interventions.

Understanding motifs can help us find out why diseases happen and how to treat them. It can even lead us to

create personalized medicine, where treatments are customized for each person based on their unique genetic

patterns. The motif finding problem encapsulates a significant computational challenge in bioinformatics,

characterized by its inherent complexity and the vastness of biological data. At the heart of this challenge is

the combinatorial explosion of possible motifs as sequence length and dataset size increase, creating a vast

search space that is impractical to explore exhaustively with conventional computing resources. This

complexity is compounded by the variability and degeneracy of biological motifs, where slight variations

can still result in functionally equivalent motifs, further expanding the search space and complicating the

identification process. Given these challenges, high-performance computing (HPC) solutions become

indispensable.

HPC can handle the problem from multiple fronts:

• Offering the computational power necessary to process large datasets.

• Enabling parallel processing to explore the search space more efficiently.

• Simplifying the use of advanced algorithms that require significant computational resources. The

deployment of HPC resources can dramatically reduce the time required for motif finding, making it

suitable to handle the increasing scale and complexity of biological data.

This paper contributes an innovative strategy for scheduling motif finding, optimizing task distribution in

heterogeneous CPU architectures that is both accurate and computationally efficient. This contribution

represent significant advancement in the fields of bioinformatics and high-performance computing, offering

practical solutions to some of the most pressing computational challenges.

The rest of this paper is organized as follows: Section 2 describes background of Motif finding strategies

and Speed-based scheduling strategy. Section 3 presents the experimental setup, including description of the

architectures used in the experiments. Section 4 presents an Exact Solution approach for solving MFP and

Task Scheduling algorithm used to ensure that bioinformatics analyses are both fast and cost-effective.

Section 5 presents experimental results. Finally, in Section 6 we conclude our work.

2. Background and Related Work:

This section provides an overview of the motif finding problem, including its biological importance and

computational challenges. In addition, we review existing algorithms for motif finding, highlighting their

limitations. This section also covers previous efforts to leverage high-performance and heterogeneous

computing for bioinformatics, setting the context for the contribution of this paper.

Definition of motif finding problem: Given a set of sequences, each not necessarily has the same length,

the goal is to find a motif of fixed length (usually relatively short) that occurs in each sequence of the set

with few or no mismatches[1], [2], [3].

SCHEDULING MOTIF FINDING PROBLEM ACROSS HETEROGENEOUS CPU ARCHITECTURES 3

Key components of the motif finding problem:

a. Input: Set of (𝑛) sequences 𝑆 = { 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛} each of length (𝑁) characters over an alphabet

(𝐴, 𝐶, 𝐺 𝑎𝑛𝑑 𝑇 for DNA sequences or 𝐴, 𝐶, 𝐺 𝑎𝑛𝑑 𝑈 for RNA sequences, etc.), permitted mutation,

(Hamming Distance), (𝑑) and the desired motif length (𝑙). The motif length indicates the number of

characters that the motif should consist of.

b. Task: Find motifs of length (𝑙) that appear as a subsequence in each sequence (𝑠𝑖) in the input set (𝑆)

allowing for a certain number of (𝑑) possible mutations at maximum.

c. Output: The output of the motif finding problem is the discovered motif, which is a string of characters

of the specified length (𝑙) that appears as a subsequence in every sequence of the input set (𝑆), allowing

for a certain number of mismatches (𝑑) at maximum.

Motif finding Algorithms and Limitations: Motif finding algorithms are key tools in bioinformatics for

discovering patterns in biological sequences, essential for understanding gene regulation, protein functions,

and more. However, these algorithms have several challenges:

• Brute-Force Algorithms[4]: They search all (4𝑙) possible sequences for motifs, becoming impractical

for large datasets due to the huge number of possible motifs. This method is limited by the exponential

growth in computational needs.

• Recursive Brute-Force Algorithms[5], [6]: They handle the motif finding problem by breaking down

the search process into smaller, more manageable tasks. Starting with a part of the motif, these methods

recursively build up to the full motif length by exploring all possible extensions one base (or amino acid)

at a time. Like their brute-force counterparts, recursive brute-force algorithms are exploring all possible

motifs up to the specified length. This systematic exploration can ensure high accuracy in identifying

motifs. The recursive nature allows for more flexible exploration of the search space, potentially making

it easier to incorporate conditions or optimizations that reduce the search space at each step. While

recursive methods may offer slight improvements in managing the search space, they still face significant

scalability issues due to the exponential growth of possibilities with increasing motif length and dataset

size. Recursive algorithms can introduce additional computational overhead, especially if not carefully

optimized. The repeated function calls and stack operations can lead to inefficiencies, particularly for

deep recursion levels.

• Greedy Algorithms[7]: By iteratively building motifs and choosing the best match at each step, these

algorithms can miss the best global motifs due to getting stuck in local optima, depending heavily on the

starting sequence.

• Expectation Maximization (EM) Algorithms[8]: These refine motif predictions iteratively but are

sensitive to initial conditions and may not find the best solution, needing substantial computational

resources.

• Gibbs Sampling[9]: This probabilistic method avoids some deterministic pitfalls but can be slow to find

the best motifs due to its random nature.

• Position Weight Matrices (PWMs) and Hidden Markov Models (HMMs)[10], [11]: While PWMs

struggle with motifs that include variations like insertions or deletions, HMMs are complex and demand

significant computational power, depending on accurate model parameters.

4 Ali M Elsawwaf et al.

• Machine Learning Approaches: Require extensive labeled data and can be challenging to interpret,

especially with complex models like neural networks.

In summary, Motif finding algorithms can be categorized into two major groups, exact and approximate

solutions:

• Exact solution[5], [12], [13], [14]:

• Apply exhaustive enumerations.

• Guarantee global optimality.

• Examples: Brute force, Skip Brute force, Recursive Brute force (R-BF).

• Approximate solution [7], [8], [9]:

• Based on probability.

• Apply some form of local search.

• Doesn’t guarantee global optimal solution.

• Examples: Gibbs sampling and Expected maximization (EM).

A common thread among these algorithms is balancing accuracy with computation efficiency. More accurate

methods (Exact Solutions) are computationally demanding, while faster ones (Approximate solutions) may

lack precision. Brute-force and recursive brute-force algorithms represent foundational approaches in the

quest to handle the motif finding problem, a key computational challenge in bioinformatics. These methods

aim to identify recurring patterns or sequences (motifs) within a set of biological sequences by exhaustively

searching through all possible sequence combinations. Despite their simplicity, these approaches have paved

the way for understanding the complexities and computational demands of motif finding. Biological data's

variability adds complexity, with motifs often being variable and not perfectly conserved. Addressing these

issues while managing computational costs remains a key challenge, especially as data grows in size and

complexity.

Parallelization efforts have tried to speed up motif finding by using multi-core CPUs, GPUs, and HPC

clusters to analyze data segments concurrently, showing significant time reductions. For the purpose of

enhancing motif finding and similar computational tasks, the focus is on heterogenous CPU architectures.

The main idea benefits from the fact that the number of the operations required to solve Motif finding can be

divided into parts. Each part can work on a specific data size called “chunk”. Consequently, we can have a

deterministic number of operations in almost all cases[15], [16], [17].

• Considering task scheduling strategy: speed-based scheduling strategy, which is displayed in figures

[1], [2], is recently used in scheduling [3], [18], [19]. This strategy considers the speed of different

architectures. It assumes that tasks of each chunk are executed by only a specific core related to specific

architecture. This assumption eliminates the factors of sharing resources that may affect the overall

system performance. Faster architecture handles a larger number of chunks. Slower architecture gets

smaller number of chunks that can be exactly processed in the same time granted to the fastest

architecture. Initially, execution time (T) required by the fastest architecture to handle all chunks, must

be determined. Other slower architectures, that can’t handle at least one chunk in the same execution time

(T), are excluded as ineligible architectures.

SCHEDULING MOTIF FINDING PROBLEM ACROSS HETEROGENEOUS CPU ARCHITECTURES 5

Speed-based scheduling strategy [3], [18], [19] doesn’t consider the actual execution time of a single chunk.

In addition, each time we add a new architecture to the fastest one; we get a new execution time (𝑇′) of

hybrid architecture smaller than (T) which should be considered on the comparison process to determine and

exclude other slower architectures. This research addresses a common schedule problem, however the

proposed algorithm dynamically distribute workload among different architectures. In addition, we proposed

a mechanism to discard ineligible architectures efficiently.

Solving MFP needs advanced algorithms and enough computing power to search through the data efficiently,

showing the vital role of high-performance computing in bioinformatics.

Pseudo Code for the Scheduling Strategy

Input (t1, t2, …, tp) ; The execution times for performing the operations of a

 ; single chunk on A1, A2, …, Ap respectively in ascending order

Input (C) ; The number of chunks C = N-L+1 in case of MFP

Output (C1, C2, …, Cp) ; The number of chunks assigned to each architecture

Function Distribute_Chunks(ti, C)

 For each i:=1 to p

 if ((t1 * C) > ti)
 ; for each architecture satisfies this condition where

 ; (2 ≤ i ≤ p) Decide which architectures will be eligible

 ; to perform operations on chunks
 then Ri := C / ti ; find the weight of each eligible architecture

 else Ri := 0
 End

; or exclude ineligible architecture

 R := R1 + R2 + … + Rp ; find the total weights

 Ru := C / R ; find the unit assigned for each weight

 For each i:=1 to P
 Ci := Ri * Ru
 End

 ; assign number of chunks Ci to each eligible Ai

Return (C1, C2, …, Cp)
End

Fig. 1 Pseudo code of speed-based scheduling algorithm[18].

6 Ali M Elsawwaf et al.

1. 𝑷𝑹𝑶𝑮𝑹𝑨𝑴 𝑴𝒐𝒕𝒊𝒇𝑻𝒂𝒔𝒌𝑺𝒄𝒉𝒆𝒅𝒖𝒍𝒆𝒓
2. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑆[1, …, T]
3. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝐿
4. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑑
5. 𝑩𝑬𝑮𝑰𝑵
6. 𝑡[𝑡1, … ,𝑡𝑝] ← 𝑙𝑜𝑎𝑑 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑎𝑠𝑘 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒𝑠
7. 𝑡𝑚𝑖𝑛 ← 𝑀𝐼𝑁𝑖=1

𝑝
(𝑡𝑖) ∗ 4𝐿 ; find the smallest run time

8. 𝑭𝑶𝑹 𝑖 = 1 𝒕𝒐 𝑝
9. 𝑰𝑭 ti ≤ 𝑡𝑚𝑖𝑛 𝑻𝑯𝑬𝑵
10. 𝑅𝑖 ← 4𝐿 / 𝑡 𝑖 ; find the weight of each architecture
11. 𝑬𝑳𝑺𝑬
12. 𝑅𝑖 ← 0 ; this architecture is very slow and will be ignored
13. 𝑬𝑵𝑫
14. 𝑬𝑵𝑫
15. 𝑅𝑡𝑜𝑡𝑎𝑙 ← 𝑅1 + 𝑅2 + ⋯ + 𝑅𝑝 ; sum the weights
16. 𝑅𝑢 ← 4𝐿 / 𝑅𝑡𝑜𝑡𝑎𝑙 ; find the tasks assigned to each weight unit

𝑜𝑓𝑓𝑠𝑒𝑡 = 0
𝑠𝑡𝑎𝑟𝑡𝑖 = 0

17. 𝑭𝑶𝑹 𝑖 = 1 𝒕𝒐 𝑝
18. 𝐶𝑖 = 𝑅𝑖 ∗ 𝑅𝑢 ;tasks assigned to architecture

 𝑠𝑡𝑎𝑟𝑡𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑖 + 𝑜𝑓𝑓𝑠𝑒𝑡 ; determine the start index of tasks
 𝑒𝑛𝑑𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑖 + 𝐶𝑖 – 1 ; determine the end index of tasks
 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐶𝑖

19. 𝑆𝑐𝑜𝑟𝑒𝑖
 ← 𝑺𝑷𝑨𝑾𝑵 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖 (𝑆, 𝐿, 𝑑, 𝐶𝑖 , 𝑠𝑡𝑎𝑟𝑡𝑖 , 𝑒𝑛𝑑𝑖)

20. 𝑬𝑵𝑫
21. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑀𝐴𝑋𝑖=1

𝑝
 (𝑆𝑐𝑜𝑟𝑒𝑖) ; find the motif of highest occurrence

22. 𝑬𝑵𝑫

Fig. 2 Pseudo code of speed-based scheduling algorithm[3], [19].

This paper has the following main objective:

Objective : Optimize Task Distribution Across Heterogeneous CPU Architectures

• Develop and implement a strategy for distributing the computational tasks involved in motif finding

across a heterogeneous computing environment. This environment includes CPUs with varying numbers

and speeds of cores, maximizing the utilization of available computational resources.

• Achieve Significant Reductions in Computation Time: Through development of efficient task

scheduling algorithm and the efficient use of heterogeneous CPU architectures, aim to significantly

reduce the overall computation time required for motif finding. This involves balancing the load across

different resources applying efficient task scheduling algorithm to minimize total execution time.

3. Methodology:

SCHEDULING MOTIF FINDING PROBLEM ACROSS HETEROGENEOUS CPU ARCHITECTURES 7

This section describes in detail the methods used in the research, divided into two main parts: Considering

an exact solution algorithm for motif finding and the strategy for optimizing task distribution in

heterogeneous computing environments. It explains algorithmic design, and considerations for efficient

computation across diverse CPU architectures.

3.1. Considering an Exact Solution Algorithm:

Given input set of (𝑛) sequences = { 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛} , each consists of 4 repeated characters {𝐴, 𝐶, 𝑇, 𝐺} for

DNA sequences or {𝐴, 𝐶, 𝐺, 𝑈} for RNA sequences, not necessarily has the same length (𝑁), the goal is to

find a motif of fixed length (𝑙) that occurs in each sequence of the set with mutation (Hamming Distance) of

(𝑑) mismatches at maximum [2].

The research represents the following exact solution algorithm:

a. Rearrange the input set of (𝑛) sequences 𝑆 = { 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛} in ascending order according to its

length where length of {𝑠1 < 𝑠2 < 𝑠3 <, … , < 𝑠𝑛}

b. Using the shortest string (𝑠1) to extract set of all possible (𝑁 − 𝑙 + 1) windows { 𝑤1, 𝑤2, … … , 𝑤𝑁−𝑙+1}

where (𝑁) is length of string (𝑠1) , and (𝑙) is the length of the motif. These windows are used as bases

for generating all possible motifs of each chunk.

c. Dividing tasks into chunks, for each window { 𝑤1, 𝑤2, … … , 𝑤𝑁−𝑙+1} generate all possible motifs

(𝑚) 𝑎𝑠 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) that have mutation (Hamming Distance) of (d) mismatches at maximum with

the given window. In total, we have (𝑁 − 𝑙 + 1) chunks, each chunk has the same total number (𝑚)

of Lmers (generated m)

 𝑚 = ∑ (𝑣 − 1)𝐻𝐷𝐶𝐻𝐷
𝑙 =

𝑑

𝐻𝐷=0
∑ (𝑣 − 1)𝐻𝐷 𝑙!

(𝑙−𝐻𝐷)! 𝐻𝐷!

𝑑

𝐻𝐷=0
 (1)

 𝑤ℎ𝑒𝑟𝑒 𝑣 = 4 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 {𝐴, 𝐶, 𝑇, 𝐺} 𝑓𝑜𝑟 𝐷𝑁𝐴 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑜𝑟 {𝐴, 𝐶, 𝐺, 𝑈}𝑓𝑜𝑟 𝑅𝑁𝐴 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠

𝐻𝐷 𝑖𝑠 ℎ𝑎𝑚𝑚𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛), (𝑑) 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛,

(𝐶) 𝑖𝑠 𝑓𝑜𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 (𝑙) 𝑖𝑠 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐿𝑚𝑒𝑟.

𝐶𝐻𝐷
𝑙 = 𝐶(𝑙, 𝐻𝐷) =

𝑙!

(𝑙 − 𝐻𝐷)! 𝐻𝐷!

d. For each chunk, decide if generated motif 𝑚𝑖 of a given window is eligible. Each eligible motif must

match with one window at least in each sorted sequence { 𝑠2, 𝑠3, … , 𝑠𝑛}. The motif is ineligible and

neglected once it has mutation greater than (𝑑) with all extracted windows of any sequence

{ 𝑠2, 𝑠3, … , 𝑠𝑛} respectively.

Used exact solution algorithm for motif finding is represented in Figure (3).

8 Ali M Elsawwaf et al.

1. Start: Begin the algorithm.

 // Sort sequences by length to minimize search space.

2. Rearrange Sequences: Sort the input set of sequences 𝑆 = {𝑠1, 𝑠2, … . . , 𝑠𝑛} in ascending order

based on their length.

3. Identify Shortest Sequence: Select the shortest string 𝑠1 from the sorted set.

// Generate all possible motifs for the shortest sequence.

4. Extract Windows: Using 𝑠1 , extract all possible windows 𝑊 = {𝑤1, 𝑤2, … . , 𝑊𝑁−𝑙+1},
 where N is the length of 𝑠1 and 𝑙 is the motif length.

// Process each chunk independently for parallel execution.

5. Loop Through Chunks: For each chunk (associated with a window from 𝑤):

• Generate Motifs: Generate all possible motifs 𝑚 for the chunk. generate all possible

motifs (𝑚) that have up to

 d mismatches with each window (Hamming Distance ≤ 𝑑).

• Loop Through Motifs in Chunk: For each generated motif 𝑚𝑖:

• Check Eligibility Across Sequences: For each sequence 𝑠𝑗 in {𝑠2, 𝑠3, . , 𝑠𝑛}

• Match Motif with Windows in 𝒔𝒋: Check if 𝑚𝑖 matches at least one window in 𝑠𝑗with

mismatches ≤ 𝑑 .
• Decision: If 𝑚𝑖 has mismatches > 𝑑 with all windows of any 𝑠𝑗 , mark 𝑚𝑖 as ineligible.

• End Loop Through Motifs in Chunk

• End Loop Through Chunks

6. Collect Results: Aggregate all eligible motifs found across all chunks.

7. End: Conclude the algorithm.

Fig. 3 Exact solution approach.

Task scheduling strategy:

In this modified algorithm, we consider both actual execution time of a single chunk and new execution time

(𝑇′) of hybrid architecture that result each time we add a new architecture to the fastest one; where (𝑇′ <
𝑇). New execution time (𝑇′) is considered on the comparison process to exclude ineligible architectures as

explained in figure (4) that represents the pseudo code of the proposed scheduling algorithm.

SCHEDULING MOTIF FINDING PROBLEM ACROSS HETEROGENEOUS CPU ARCHITECTURES 9

1 Input:
2 𝑪′ : Predefined number of chunks
3
4
5
6

Input (𝑇1, 𝑇2, … … . , 𝑇𝑝) : Total execution time for a predefined number of chunks 𝑪′ (respectively in ascending order)

for different architectures 𝐴1, 𝐴2, … , 𝐴𝑝

where 𝑇1 < 𝑇2 < ⋯ < 𝑇𝑝

7 𝐴1, 𝐴2, … , 𝐴𝑝 : Architectures 𝐴1, 𝐴2, … , 𝐴𝑝

8 𝑛1, 𝑛2, … . . , 𝑛𝑝 : Number of cores for 𝐴1, 𝐴2, … , 𝐴𝑝

9
10
11
12
13

𝑡1, 𝑡2, … . , 𝑡𝑝 : Execution time for performing the operations of a single chunk on 𝐴1, 𝐴2, … , 𝐴𝑝

respectively

where 𝑡𝑖 = 𝑇𝑖/(
𝐶′

𝑛𝑖
) and 𝑖 = 1,2, … … . , 𝑝

This doesn’t mean that (𝑡1 < 𝑡2 < ⋯ < 𝑡𝑝)

14 Input(𝑙) : Length of lmer 𝑙=15
15 Input(𝑁) : Length 𝑁 of shortest string 𝑠1.
16 Input(C) : Total number of chunks 𝐶 = (𝑁 − 𝑙 + 1)
17 Output:
18 Output (𝑐1, 𝑐2, … … , 𝑐𝑝) : Number of chunks assigned to each architecture

19 Output 𝑐1
′ , 𝑐2

′ , … … , 𝑐𝑝
′) : The number of chunks per core assigned to each architecture where 𝑐𝑖

′ = 𝑐𝑖/𝑛𝑖

20 Output (𝑇′) : Total execution Time of hybrid architecture

21 Begin

22 𝑅1, 𝑅2, … , 𝑅𝑝 : 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓𝐴1, 𝐴2, … , 𝐴𝑝

23 𝑅 : Total Weight

24 𝑐1 ≔ 𝐶 : Total chunks for 𝐴1 is set to equal to total chunks 𝐶 = (𝑁 − 𝑙 + 1)

25
26
27
28
29

𝒄𝟏
′ ∶= 𝒄𝟏/𝒏𝟏

𝑹𝒆𝒎𝒂𝒊𝒏𝒅𝒆𝒓 ∶= 𝒄𝟏%𝒏𝟏
 If Remainder != 0
 𝒄𝟏

′ ∶= [(𝒄𝟏 − 𝑹𝒆𝒎𝒂𝒊𝒏𝒅𝒆𝒓) / 𝒏𝟏] + 𝟏
𝑬𝒏𝒅

: The maximum assigned number of chunks per core in architecture 𝐴1

30
31

𝑇 ≔ 𝑡1 ∗ 𝑐1
′

𝑇′ ∶= 𝑇

: Minimum Total execution time of fastest architecture 𝐴1

: Setting initial value of 𝑇′

32 𝑅1 ≔ (
𝑐1

𝑡1
) 𝑛1

: Weight of 𝐴1

33 𝑅 ∶= 𝑅1 : Total Weight

34 𝑅1, 𝑅2, … , 𝑅𝑝 ≔ 0 : Weight of 𝐴1, 𝐴2, … , 𝐴𝑝

35 for each 𝒊 ∶= 𝟐 𝒕𝒐 𝒑 : For each 𝐴𝑖 decide which one is eligible

36 𝑖𝑓(𝑇′ > 𝑡𝑖)

37
 𝑡ℎ𝑒𝑛 𝑅𝑖 ≔ (

𝐶

𝑡𝑖
) 𝑛𝑖

: Get weight of eligible architecture 𝐴𝑖

38 𝑒𝑙𝑠𝑒 𝑅𝑖 ∶= 0 : Or exclude ineligible architecture

39 𝑅 ∶= 𝑅 + 𝑅𝑖 : Find the total weight

40 𝑅𝑢 ≔ 𝐶/𝑅 : Find the unit assigned for each weight

41 𝑜𝑓𝑓𝑠𝑒𝑡 ∶= 0

42 𝑠𝑡𝑎𝑟𝑡𝑗 ≔ 0

43 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒋 ∶= 𝟏 𝒕𝒐 𝒑

44 𝐶𝑗 ≔ 𝑅𝑗 ∗ 𝑅𝑢 : Total number of assigned chunks to each eligible 𝐴𝑗

45 𝑠𝑡𝑎𝑟𝑡𝑗 ≔ 𝑠𝑡𝑎𝑟𝑡𝑗 + 𝑜𝑓𝑓𝑠𝑒𝑡 : Start index of chunks

46 𝑒𝑛𝑑𝑗 ≔ 𝑠𝑡𝑎𝑟𝑡𝑗 + 𝐶𝑗 − 1 : End index of chunks

47 𝑜𝑓𝑓𝑠𝑒𝑡 ∶= 𝐶𝑗

48 𝑐𝑗
′ ∶= 𝑐𝑗/𝑛𝑗 : Total Maximum chunks per each core in Architecture 𝐴𝑗

49
50
51
52

 𝑹𝒆𝒎𝒂𝒊𝒏𝒅𝒆𝒓′ ∶= 𝒄𝒋%𝒏𝒋
 If Remainder’ != 0
 𝒄𝒋

′ ∶= [(𝒄𝒋 − 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟′) / 𝒏𝒋] + 𝟏

 𝑬𝒏𝒅

53 𝑬𝒏𝒅

54 (𝑐1, 𝑐2, … … . . , 𝑐𝑝) : Total number of assigned chunks to each eligible 𝐴𝑗

55
56

 (𝑐1
′ , 𝑐2

′ , … … … , 𝑐𝑝
′) : Total chunks per each core in architecture 𝐴𝑗

57
58
59

 𝑇′ ∶= 𝑡1 ∗ 𝑐1
′

 ∶≃ 𝑡2 ∗ 𝑐2
′

 ∶≃ 𝑡𝑝 ∗ 𝑐𝑝
′

: Updating the new total execution time of hybrid architecture that is considered

60 𝑬𝒏𝒅

61 𝑬𝒏𝒅

Fig.4 Pseudo code used in proposed scheduling strategy.

10 Ali M Elsawwaf et al.

4. Implementation:

In this section, we present the detailed description of experimental setup including description of CPU

architectures and the total required comparison calculations. In addition, we investigate each CPU

architectures to calculate the actual average execution time of a single chunk. These results serve as crucial

inputs to the scheduling algorithm, which is designed to optimize resource utilization and minimize job

completion times for motif finding problem.

4.1 Experimental Setup:

In this subsection, we present the detailed description of the architectures used in the experiments and

required comparison calculations. In our research, we conduct experiments using a set of diverse CPU

architectures.

Central Processing Units: The CPU architecture represents a traditional and versatile computing resource.

We use CPUs with multiple cores and high clock speeds to handle a broad range of computational tasks,

from general-purpose computing to complex simulations and data processing. Software developments, such

as OpenMP and MPI (Message Passing Interface), enable bioinformatics algorithms to be parallelized and

optimized for multi-core architectures. This significantly enhances the capability to process large datasets

and perform complex analyses.

Description of CPU architectures:

We use 3 heterogenous CPU architectures as described in table (1). The three architectures will be denoted

by Arch1, Arch2, and Arch3 respectively in the results section.

Required comparison calculations:

In this paper we consider motifs finding where 𝑛 = 20 strings, 𝑁 = 600 characters, 𝑑 = 4 𝑎𝑛𝑑 𝑙 = 15

and 𝑣 = 4 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 {𝐴, 𝐶, 𝑇, 𝐺} 𝑓𝑜𝑟 𝐷𝑁𝐴 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑠𝑎𝑚𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 𝑁.
𝐼𝑛 𝑐𝑎𝑠𝑒 𝑡ℎ𝑎𝑡 𝑎𝑙𝑙 𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑁,
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑖𝑛𝑑𝑜𝑤𝑠 𝑝𝑒𝑟 𝑠𝑡𝑟𝑖𝑛𝑔 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶ℎ𝑢𝑛𝑘𝑠 = (𝑁 − 𝑙 + 1)

Applying equation (1), we get the total generated 𝐿𝑚𝑒𝑟𝑠 (𝑚) per each chunk that have 𝑑 = 4 characters

mutations at maximum.

𝑇ℎ𝑒𝑛 𝐿𝑚𝑒𝑟𝑠 (𝑚) = ∑ (3)𝐻𝐷𝐶𝐻𝐷
15 =

4

𝐻𝐷=0
∑ (3)𝐻𝐷 15!

(15−𝐻𝐷)! 𝐻𝐷!

4

𝐻𝐷=0
= (𝟏𝟐𝟑, 𝟖𝟒𝟏)𝐋𝐦𝐞𝐫𝐬/𝐜𝐡𝐮𝐧𝐤 (2)

Extracted Lmers of a given window, starting from 𝐻𝐷 = 0,1,2,3, 𝑎𝑛𝑑 4 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦,
𝑎𝑛𝑑 𝑙 = 15 characters per Lmer are displayed in table (2).

SCHEDULING MOTIF FINDING PROBLEM ACROSS HETEROGENEOUS CPU ARCHITECTURES 11

Table 1: Architectures (1), (2) and (3) CPU-based Compute Node.

Attribute

Architecture (1) 40 cores Architecture (2) 24 cores Architecture (3)4 cores

Value Value Value

Architecture x86_64 x86_64 X86-64

CPU(s) 40 vCPUs x intel® Xeon® Silver

4114

24 vCPUs Intel (R) Xeon(R)

CPU E5-2630

4 vCPUs x86 Family 6 Model 15

Stepping 6 GenuineIntel

Thread(s) per core 1 2 1

Core(s) per socket 20 6 2

Socket(s) 2 2 2

CPU MHz 2.20GHZ 2.3 GHZ 2.660 GHZ
Memory 64 GB 40 GB 4 GB

Table 2: Number of extracted Lmers corresponding to each Hamming Distance (mutation).

Hamming Distance (𝑯𝑫) Number of extracted Lmers

0 1

1 45

2 945

3 12,285

4 110,565

Total extracted Lmers per window 123,841 Lmers

To solve motif finding problem, we convert each string into sequences of binary bits {0,1} where

{𝐴, 𝐶, 𝑇 𝑎𝑛𝑑 𝐺} are represented by {00, 01, 10 𝑎𝑛𝑑 11} respectively. Accordingly, 𝑣 = 2 𝑏𝑖𝑡𝑠 {0, 1}. Then

each Lmer (window) has length of 𝑙 = (30) 𝑏𝑖𝑡𝑠 which is equivalent to 15 characters, and each string consists

of (1200) bits which is equivalent to 600 characters.

For a given window 𝑤𝑖 , We need to generate up to 𝑑 = 8 bits mutations that equivalent to 𝑑 = 4 characters

mutations. Applying equation (1), we get the total generated 𝐿𝑚𝑒𝑟𝑠 (𝑚) that have up to 8 bits mutations.

𝑳𝒎𝒆𝒓𝒔 (𝒎) = ∑ (𝒗 − 𝟏)𝑯𝑫𝑪𝑯𝑫
𝒍 = ∑ 𝑪𝑯𝑫

𝒍
𝒅

𝑯𝑫=𝟎
=

𝒅

𝑯𝑫=𝟎
∑

𝒍!

(𝒍−𝑯𝑫)! 𝑯𝑫!
 = ∑

𝟑𝟎!

(𝟑𝟎−𝑯𝑫)! 𝑯𝑫!

𝟖

𝑯𝑫=𝟎

𝒅

𝑯𝑫=𝟎

 (3)

Where 𝑣 = 2 𝑏𝑖𝑡𝑠 {0, 1}, 𝑙 = 30 𝑏𝑖𝑡𝑠 𝑎𝑛𝑑 𝑑 = 8 bits.
Table (3) represents all generated Lmers applying 8 bits mutations at maximum. All generated motif

generated for 𝑑 = 0 bits mutation up to 𝑑 = 4 bits mutations at maximum, don’t need to be checked with its

basis window. Accordingly, only total number of required comparisons will follow equation (4)

𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝑪𝒐𝒎𝒑𝒂𝒓𝒊𝒔𝒐𝒏𝒔 = ∑ 𝑪𝑯𝑫
𝟑𝟎

𝟖

𝑯𝑫=𝟓
 (4)

These comparisons are applied with each (𝑁 − 𝑙 + 1) window to get a list of (123,841) Lmers that have total

of 4 characters mutations at maximum for a given window, 𝑤𝑖 that are displayed in table (2).

Accordingly, total number of comparisons calculations =

= (Number of strings * Number of windows per string* Number of chunks* Number of generated Lmers per

chunk) + (Number of chunks* Required comparisons of each chunk)

= [(𝑛 − 1) ∗ (𝑁 − 𝑙 + 1)2 ∗ ∑ (3)𝐻𝐷𝐶𝐻𝐷
15

4

𝐻𝐷=0

] + [(𝑁 − 𝑙 + 1) ∗ ∑ 𝐶𝐻𝐷
30

8

𝐻𝐷=5

] (5)

mailto:CPU@2.20GHZ
mailto:CPU@2.20GHZ

12 Ali M Elsawwaf et al.

Considering that all calculations of a single chunk, are carried by only a specific core inside the given

architecture, including creation of motifs and comparison operations with all extracted Lmers of given

sequence of strings are displayed in equation (6) to investigate all accepted Lmers.

Total calculations of a single chunk = [(𝑛 − 1) ∗ (𝑁 − 𝑙 + 1) ∗ ∑ (3)𝐻𝐷𝐶𝐻𝐷
15

4

𝐻𝐷=0
] + [∑ 𝐶𝐻𝐷

30
8

𝐻𝐷=5
] (6)

Table 3: Number of extracted Lmers corresponding up to 8 bits mutations at maximum.

𝑯𝑫 (𝒃𝒊𝒕𝒔) 𝒍 (𝒃𝒊𝒕𝒔) 𝒍 − 𝑯𝑫 𝒍! 𝑯𝑫! (𝒍 − 𝑯𝑫)! 𝑳𝒎𝒆𝒓𝒔 (𝒎)
0 30 30 2.65253E+32 1 2.65253E+32 1

1 30 29 2.65253E+32 1 8.84176E+30 30

2 30 28 2.65253E+32 2 3.04888E+29 435

3 30 27 2.65253E+32 6 1.08889E+28 4,060

4 30 26 2.65253E+32 24 4.03291E+26 27,405

5 30 25 2.65253E+32 120 1.55112E+25 142,506

6 30 24 2.65253E+32 720 6.20448E+23 593,775

7 30 23 2.65253E+32 5040 2.5852E+22 2,035,800

8 30 22 2.65253E+32 40320 1.124E+21 5,852,925

Total Extracted Lmers (up to 8 bits mutations at maximum) per window 8,656,937

4.2. Calculating the Actual Average Execution Time of a Single Chunk:

We apply two different solvers to extract motifs. In the first solver we use recursive function to generate

motifs of each chunk, while the second solver replace recursive function with iterative one. For both solvers,

we use MPI paradigm. We start by investigating each CPU architecture to calculate the actual average

execution time of a single chunk. These results serve as inputs to the proposed scheduling algorithm, which

is designed to optimize resource utilization and minimize job completion times for large-scale problems. We

have a total chunks of (𝑁 − 𝑙 + 1) = 586.

Firstly, we investigate execution time for each chunk in case of activating only 1 core in each architecture.

Secondly, we reinvestigate execution time for each chunk in case of activating all cores in each architecture.

Figures [5] display average execution time of a single chunk in different CPU architectures, applying

different number of cores and two different solvers. In case of applying solver1 (recursive one), average

execution time of a single chunk is represented in blue bar, while it is represented in black bar when applying

solver2 (iterative one) for each architecture. Investigating figure [5], solver2 (iterative one) outperforms

solver1 (recursive one), Accordingly, solver2 is used to get better execution time. Figure [6] display average

execution time for a single chunk in both cases of activating only one core and activating all cores of each

architecture.

Investigating figures [5-6], we conclude that:

1. For all architectures, average execution time of a chunk using the second solver (iterative one)

outperforms that of the first solver (recursive one).

SCHEDULING MOTIF FINDING PROBLEM ACROSS HETEROGENEOUS CPU ARCHITECTURES 13

2. For all architectures, average execution time of each chunk increases as the number of cores increase

whatever which solver is used due to communication overhead between master core and all remaining

cores. We get the maximum execution time of a single chunk, displayed in black line, when all cores

of a given architecture are used in the computational process.

Accordingly:

1. We apply the best problem solver (iterative one) to get best execution time.

2. To get actual execution time of a single chunk, we consider the architecture that has maximum

number of cores. Accordingly, we set the predefined number of chunks (𝑪′ = 𝟒𝟎) to ensure that all

cores of each architecture are used and activated.

As a result, we get actual average execution time of each chunk applying the best solver (iterative one) of

each architecture as displayed in figure (7). To get average total execution time of all chunks, we multiply

average execution time of a chunk by the maximum number of chunks assigned to single core for each

architecture.

Table (4) represents both of actual total execution time of all 586 chunks and average execution time of a

single chunk (activating all cores) for different architectures. These results are displayed in figures (7, 8).

Fig.5 Average Execution time of each chunk for all

Architectures, applying two different solvers.

Fig.6 Execution time of a single chunk, applying

solver2 (iterative one).

Table 4: Total execution time and actual average execution time (Sec.) of single chunk for different architectures.

#Chunks Architecture

Arch. (1), 40 cores, 2.20GHZ Arch. (2), 24 cores, 2.3 GHZ Arch. (3), 4 cores, 2660 Mhz

𝑁 − 𝑙 + 1 = 586 661.0124 1242.3385 5191.6137

1 43.21405 49.14978 34.82841

mailto:CPU@2.20GHZ
mailto:CPU@2.20GHZ

14 Ali M Elsawwaf et al.

Fig.7 Average execution time of single chunk,

activating all cores in each architecture.

Fig.8 Actual total execution time of all 586 chunks

for different architectures.

5. Experimental Results:

This section presents the findings of the study, starting with the validation of the exact solution algorithm's

accuracy and efficiency. It then evaluates the effectiveness of the task distribution strategy, demonstrating its

impact on computation time and resource utilization. The results are compared with existing methods to

highlight the improvements achieved.

5.1. Problem Complexity Reduction:

1- Applying Skip Brute Force[20]:

For a given length (15) of L-mer, we get the total number of 415 L-mers that need to be investigated

with each window in the first string to extract all accepted (123,841) L-mers that will need to be

investigated with (𝑛 − 1)(𝑁 − 𝑙 + 1) windows where 𝑛 is the number of strings, 𝑁 is the length

of each string and 𝑙 is the length of L-mer.

2- Applying used algorithm:

Instead of investigating all of 4𝑙 L-mers as in case of skip brute force with each window in the first

string, we only need to investigate a specific number of Lmers presented in equation (4) applying 8

bits binary bit mutations at maximum for each window as displayed in table (3).

Accordingly, we get a reduction in total number of L-mers that need to be investigated.

Percentage of Total Reduction =
𝟒𝟏𝟓 −∑ 𝑪𝑯𝑫

𝟑𝟎
𝟖

𝑯𝑫=𝟓

𝟒𝟏𝟓
= 99.2% (7)

5.2. Applying Proposed Scheduling algorithm:

A- The proposed scheduling algorithm considers actual execution time of single chunk while activating

all cores of each architecture in the computation process. Using results in table (4) and applying

scheduling algorithm in figure (4), total number of 586 chunks are divided between different

architectures as displayed in table (5). Combining these architectures result in a hybrid architecture

that consists of 68 cores (ranks) that take index from 0 to 67 and start its work in parallel.

SCHEDULING MOTIF FINDING PROBLEM ACROSS HETEROGENEOUS CPU ARCHITECTURES 15

Total execution time of the hybrid architecture is the execution time of the latest rank finishing its

work.

B- Speed-based scheduling strategy, which is displayed in figures [1-2], are recently used in scheduling

[3], [18], [19]. This algorithm doesn’t consider the new execution time (𝑇′) of hybrid architecture to

exclude illegible architectures. In addition, This algorithm activates only one core to handle all

computations for this process. Accordingly, execution time of single chunk, activating only one core,

is taken as a reference for each architecture which is represented in blue line in figure [6].

Accordingly, speed-based scheduling algorithm [3], [18], [19] doesn’t consider the actual execution

time of single chunk that is represented in black line in figure [6]. Tables (5, 6) represent a comparison

of assigned chunks for each architecture and total execution time between scheduling algorithm [3],

[18], [19] and the proposed approach.

Table 5: Chunk assignment based on different scheduling algorithm.

Scheduling

Algorithm
Architecture

Arch. (1), 40 cores, 2.20GHZ Arch. (2), 24 cores, 2.3 GHZ Arch. (3), 4 cores, 2660 Mhz

Proposed approach 355 chunks 187 chunks 44 chunks

Algorithm [3], [18], [19] 376 chunks 180 chunks 30 chunks

Table 6: Total execution time for algorithm [3], [18], [19] and new proposed approach.

Total Execution Time in Seconds

Enhancement % Scheduling Algorithm [3], [18], [19] New Proposed Approach

4.3214E+02 3.9320E+02 9%

Performance Enhancement =
𝑇𝑜𝑙𝑑−𝑇𝑛𝑒𝑤

𝑇𝑜𝑙𝑑
 = 9%

6. Conclusion:

In this study, we proposed scheduling strategy to optimize resource utilization and minimize job completion

times for large-scale problems across heterogeneous CPU architectures. The research aimed to address the

challenges associated with CPU heterogeneous architectures, leading to inefficient resource utilization and

extended job completion times. To achieve our objectives, we first conducted a series of experiments using

various CPU architectures and initiating different number of cores to calculate actual execution time of single

chunk. Based on these findings, we developed the proposed scheduling strategy that maps computation of

chunks to architectures based on their actual execution time of single chunk and new total execution time

(𝑇′) of hybrid eligible architectures. While scheduling algorithm[3], [18], [19] uses total execution time (𝑇)

of fastest architecture as a static reference for comparison process to eliminate ineligible architecture, we

assure that the new resulting actual total execution time (𝑇′) of the hybrid eligible architecture should be

used in the comparison process instead. In addition, the actual execution time for a single chunk should be

considered for each architecture. We examine the performance trends of each architecture applying different

numbr of cores. This analysis helps us understand how each architecture scales with increasing number of

cores. Identifying the performance trends allows us to determine the architecture's efficiency in handling a

mailto:CPU@2.20GHZ
mailto:CPU@2.20GHZ

16 Ali M Elsawwaf et al.

wide range of computational workloads. Evaluation of the proposed approach demonstrated several key

findings. First, the proposed scheduling approach significantly improved resource utilization compared to

scheduling algorithm[3], [18], [19]. Second, the proposed scheduling algorithm led to faster job completion

and improved system efficiency by 9%. Future research directions are proposed to improve the architecture-

aware scheduling approach further. These directions include exploring energy-aware scheduling into the

scheduling approach. Energy-efficient scheduling aims to minimize energy consumption while maintaining

high-performance levels. By incorporating energy-awareness, the approach can contribute to more

sustainable and environmentally friendly computing practices.

7. Declaration

Competing interests

The author(s) declare no competing interests.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data availability

Data is provided within the manuscript

8. References

[1] P. Pevzner, Computational molecular biology: an algorithmic approach. MIT press, 2000.
[2] F. A. Hashim, M. S. Mabrouk, and W. Al-Atabany, “Review of different sequence motif finding

algorithms,” Avicenna J Med Biotechnol, vol. 11, no. 2, p. 130, 2019.
[3] A. Barghash and A. Harbaoui, “A Proposed Approach for Motif Finding Problem Solved on

Heterogeneous Cluster with Best Scheduling Algorithm,” International Journal of Advanced
Computer Science and Applications, vol. 14, no. 5, 2023.

[4] H. M. Faheem, “Accelerating Motif Finding Problem using Grid Computing with Enhanced Brute
Force,” 2010.

[5] M. A. Radad, N. A. El-Fishawy, and H. M. Faheem, “Implementation of Recursive Brute Force for
Solving Motif Finding Problem on Multi-Core,” International Journal of Systems Biology and
Biomedical Technologies, vol. 2, no. 3, pp. 1–18, Jul. 2013, doi: 10.4018/ijsbbt.2013070101.

[6] M. A. Radad, N. A. El-Fishawy, and H. M. Faheem, “Enhancing Parallel Recursive Brute Force
Algorithm for Motif Finding,” 2014.

[7] A. M. Carvalho and A. L. Oliveira, “GRISOTTO: A Greedy Approach to Improve Combinatorial
Algorithms for Motif Discovery with Prior Knowledge,” Algorithms for Molecular Biology, vol. 6, 2011,
[Online]. Available: https://link.springer.com/article/10.1186/1748-7188-6-13

[8] J. M. C. Garbelini and D. S. Sanches, “Expectation Maximization Based Algorithm Applied to DNA
Sequence Motif Finder,” in 2022 IEEE Congress on Evolutionary Computation, 2022. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9870303/

[9] G. D. Stormo, Motif Discovery Using Expectation Maximization and Gibbs Sampling. Springer, 2010.
[Online]. Available: https://link.springer.com/protocol/10.1007/978-1-60761-854-6_6

SCHEDULING MOTIF FINDING PROBLEM ACROSS HETEROGENEOUS CPU ARCHITECTURES 17

[10] M. Siebert and J. Söding, “Bayesian Markov models consistently outperform PWMs at predicting
motifs in nucleotide sequences,” Nucleic Acids Res, vol. 44, no. 13, pp. 6055–6069, 2016.

[11] J. Wu and J. Xie, “Hidden Markov model and its applications in motif findings,” Statistical Methods in
Molecular Biology, pp. 405–416, 2010.

[12] M. Hasan and P. C. Shill, “A Comparative Analysis for Generating Common d-Neighborhood on
Planted Motif Search Problem,” in International Conference on Intelligent Computing & Optimization,
2022, pp. 822–831.

[13] S. Mohanty, P. K. Pattnaik, A. A. Al-Absi, and D.-K. Kang, “A Review on Planted (l, d) Motif Discovery
Algorithms for Medical Diagnose,” Sensors, vol. 22, no. 3, p. 1204, 2022.

[14] M. Hasan, A. S. M. Miah, M. M. Hossain, and M. S. Hossain, “LL-PMS8: A time efficient approach to
solve planted motif search problem,” Journal of King Saud University-Computer and Information
Sciences, vol. 34, no. 6, pp. 3843–3850, 2022.

[15] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley, and S. Amarasinghe, “Portable performance on
heterogeneous architectures,” in International Conference on Architectural Support for Programming
Languages and Operating Systems - ASPLOS, 2013, pp. 431–443. doi: 10.1145/2451116.2451162.

[16] A. R. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling techniques in cloud computing: A
literature survey,” Future Generation Computer Systems, vol. 91, pp. 407–415, Feb. 2019, doi:
10.1016/j.future.2018.09.014.

[17] H. M. Faheem and B. König-Ries, “A multiagent-based framework for solving computationally
intensive problems on heterogeneous architectures bioinformatics algorithms as a case study,” in
ICEIS 2014 - Proceedings of the 16th International Conference on Enterprise Information Systems,
SciTePress, 2014, pp. 526–533. doi: 10.5220/0004967105260533.

[18] H. M. Faheem and others, “A new scheduling strategy for solving the motif finding problem on
heterogeneous architectures,” Int J Comput Appl, vol. 101, no. 5, 2014.

[19] H. M. Faheem, B. Koenig-Riez, M. Fayez, I. Katib, and N. AlJohani, “Solving the Motif Finding Problem
on a Heterogeneous Cluster using CPUs, GPUs, and MIC Architectures,” Mathematics and Computers
in Sciences and Industry, pp. 226–232, 2015.

[20] M. M. Al-Qutt, H. Khaled, R. ElGohary, H. M. Faheem, I. Katib, and N. Al-Johani, “Accelerating Motif
Finding Problem Using Skip Brute-Force on CPUs and GPU’s Architectures,” in Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA), 2017, pp. 155–161.

