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Abstract: Visual field assessment is a critical component in the diagnosis and management of various 

ocular and neurological conditions. The Humphrey Field Analyzer (HFA) is a widely used instrument for 

this purpose, providing accurate and reliable measurements of the visual field. This review explores the 

principles, methodologies and clinical applications of Humphrey field analysis in visual field assessment 

and pre-diagnosis of glaucoma using Artificial Intelligence and deep learning. The clinical utility of HFA 

is demonstrated by its application in the diagnosis and monitoring of diseases such as glaucoma, retinal 

diseases, and neuro-ophthalmic disorders. In this comprehensive review, the models considered include 

CascadeNet-5 and Linear Regression, RGC-AC. Each model was trained on a labeled dataset and 

evaluated using standard performance metrics. Our results demonstrate that CascadeNet-5 outperforms 

other models in terms of predictive accuracy and sensitivity, while Linear Regression and RGC-AC 

exhibit comparable performance.  

 

Keywords: Artificial Intelligence; Deep Learning; Visual Field; Glaucoma; Humphrey Field Analyzer. 

 

1. Introduction 

 

It is important to note that glaucoma is the top reason for irreversible blindness [1]. Glaucoma results in 

the death of Retinal Ganglion Cells (RGCs), leading to a disruption in the transmission of visual 

information from the optic nerve to the Lateral Geniculate Nucleus (LGN). The Optic Radiations (OR) 
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are responsible for transmitting this information from the LGN to the visual cortex. The cells within the 

LGN are not directly affected by glaucoma, but they experience a lack of sensory stimulation. This 

deprivation of sensory input may have implications for visual processing in individuals with glaucoma. 

While glaucoma does not directly impact the cells within the LGN, the absence of sensory input can affect 

visual processing. This may have consequences for how individuals with glaucoma perceive the world 

around them. [2]. One of the key questions in sensory neuroscience, with important implications for 

clinical practice, is whether alterations in the sensory periphery impact the characteristics of central 

processing pathways [3,4]. Studying the properties of the optic nerve in glaucoma offers a chance to 

investigate how alterations in the sensory periphery impact central brain connections. Another theory 

suggests that the effects of glaucoma on white matter may indicate accelerated aging, particularly in the 

retina [5]. 

Current approaches to managing glaucoma focus on preventing permanent vision loss and maintaining 

quality of life. The effectiveness of these strategies is primarily assessed through testing the visual field 

[6-8]. The Humphrey Field Analyzer (HFA) utilizes the 24-2 test pattern to assess 24 degrees centrally, 

or the 30-2 test pattern to evaluate a slightly wider area of 30 degrees [9].  

At present, the standard clinical method is white-on-white static automated perimetry, which assesses 

incremental thresholds at different points throughout the visual field [10]. By drawing on both practical 

experience and historical precedent [11], the 24-2 test grid is commonly used because it includes areas 

commonly impacted by glaucoma [12], in addition to providing a sufficient number of test locations that 

are beneficial for clinical use [13]. For instance, a SITA-Faster 24-2 test can evaluate 52 test locations 

across a visual field spanning about 24 degrees from fixation, including two nasal points, in just 2-3 

minutes [14,15]. 

In recent times, multiple organizations have emphasized the significance of prioritizing visual field testing 

in the central visual field, specifically within 10 degrees from fixation. This is because defects in central 

vision can greatly affect daily activities and overall quality of life [16-18].Central visual field defects play 

a crucial role in modern glaucoma staging systems, as they often indicate the progression of the disease 

to more severe stages [7,19].Some studies have reported a higher occurrence of central visual field defects 

when using the 10-2 test [20,21],However, some have proposed that the identification of central visual 

field abnormalities is comparable across the commonly utilized glaucoma-related visual field test grids, 

including 24-2, 24-2C, and 10-2 [22-27]. 

The patient must have undergone visual field testing using the 10-2 (SITA-Fast) and 24-2 (SITA-Faster) 

protocols on the Humphrey Field Analyzer (HFA3, Carl Zeiss Meditec, Dublin, CA). The results must 

have met the manufacturer's reliability criteria, as outlined in the authors' previous research, which 

includes less than 15% false positives or negative, no seeding point errors, and less than 20% of instances 

with gaze tracker deviations exceeding 6 degrees [28,29]. 

Artificial Intelligence (AI) is a cutting-edge area of research in computer science that is revolutionizing 

various medical fields, particularly ophthalmology. AI is expected to significantly impact the diagnosis 

and treatment of eye conditions like corneal ectasias, glaucoma, age-related macular degeneration, and 

diabetic retinopathy. However, many medical professionals are unfamiliar with AI concepts and 

terminology, leading to confusion and misuse of key terms such as machine learning and deep learning 

[30]. 

Machine learning and deep learning, two key data-driven pattern analysis methods under the umbrella of 

AI, have sparked significant interest in recent years. The advancement of technology has led to a surge in 

AI research for diagnosing ophthalmic and neurodegenerative diseases using retinal images. Different AI 

techniques, such as traditional machine learning, deep learning, and their combinations, have been utilized 

for diagnostic purposes [31]. 
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We aim to gain valuable insights into the potential of artificial intelligence to transform the landscape of 

glaucoma diagnosis by critically evaluating the research and comparing it with the traditional HFA 

approach. This analysis can flatten the way for improved patient care, earlier intervention, and possibly a 

future where artificial intelligence is a powerful tool in the fight against vision loss. 

The rest of this paper is organized as follows: Section 2 discusses the background check and related works 

presented in Section 3. Section 4 gives an overview of database resources within the field of 

ophthalmology. These databases contain valuable information relevant to research and study in this 

specialized field. These resources serve as important tools for researchers, clinicians, and other 

professionals working in ophthalmology, offering a wealth of data and knowledge for various applications 

within the field. Section 5 shows an experimental results discussion and some model experiments. The 

conclusions and suggestions for future research are showed in Section 6. This section will summarize the 

findings and propose directions for future studies. 

 

2. Analysis of Humphrey Visual Field 24-2 

 

In this section, we talk about the important points that the diagnosis of glaucoma focuses on based on the 

results that the device gives us 

 

2.1. Reliability indices  

 

Perimetry results were considered unreliable if they had a false positive rate exceeding 10% - 15%, a false 

negative rate exceeding 10% - 15%, or more than 20% fixation losses [32,33]. 

 

2.2. Total Deviation 

 

The total deviation is determined by comparing the observed threshold to the age-adjusted normal value 

[34]. The discrepancy between the observed threshold and the normal value adjusted for age is used to 

calculate the total deviation. 

 

2.3. Pattern Deviation 

 

The numerical values of the pattern deviation numerical plot are calculated by arranging the values from 

the total numerical plot in chronological order. The seventh highest point in this dataset is then 

determined. To calculate the numerical values of the pattern deviation numerical plot, the values from the 

total numerical plot are arranged in a sequential manner. This organization allows for a clear 

representation of the deviation pattern. By organizing the values in chronological order, researchers can 

effectively analyze the pattern deviation numerical plot and extract meaningful insights from the data. 

The methodology employed in this study guarantees a structured framework for comprehending the 

quantitative data. This approach facilitates a methodical way of analyzing numerical values [35]. 

 

2.4. Mean Deviation 

 

The mean deviation measures the extent of vision impairment at each point in comparison to individuals 

of the same age. It does not take into consideration overall vision impairment caused by other factors like 

cataracts [36]. 

 

2.5. Pattern Standard Deviation 
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The Pattern Standard Deviation (PSD) gives insight into localized vision loss. A high PSD suggests that 

the sensitivity loss is not uniform, meaning it is not caused by a general decrease in vision from conditions 

like cataracts. In cases of advanced glaucoma, the PSD may appear to increase due to decreased overall 

vision [36]. see Figure. 1 for an example of a Humphrey field examination result. 

 

In this section, we talk about the important points that the diagnosis of glaucoma focuses on based on the 

results that the device gives us 
 

Figure 1: An image showing the examination of a glaucoma patient using the Humphrey device 
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3. Backgrounds and Related Works 

 

In this section, we will talk about previous literature and classify it according to the type of work 

 

3.1. An Artificial Intelligence Model for Mimicking Visual Phenomena in Order to Assist 

Individuals Suffering from Visual Field Deficits 

 

In a study conducted by Z. Zhou et al. (2020) [37], deep learning technology and computer vision were 

utilized to develop an accurate artificial intelligence (AI) model that replicated the effects of visual field 

(VF) defects observed in patients. Data from Jinan University Affiliated Shenzhen Eye Hospital was 

collected using the HFA II software, with reliable samples chosen for training. The grayscale map was 

utilized for the computation of parameters associated with the nature of the damage, as illustrated in 

Figure 2 A, B. The experimental data included 1,334 normal samples and 1,929 abnormal samples that 

were considered trustworthy. A sophisticated Convolutional Neural Network (CNN) model was 

employed to analyze VF damage parameters from input images, achieving an 89% predictive accuracy in 

identifying VF defect types. By mapping VF damage parameters onto real scene images and adjusting 

darkening effects accordingly, the visual impact on patients was simulated. Clinical validation revealed 

no significant differences in the cumulative gray value (P>0.05), with 96.0% of average scores rated as 

good or excellent, confirming the AI model's accuracy. 

 

 
 

Figure 2 Z. Zhou et al.,” shows the grayscale chart of the 24- 2 strategy and the grid processing applied to the grayscale 

chart. Panel A displays the grayscale chart, while Panel B shows the grayscale chart after grid processing”. 
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3.2. Preclinical Visual Functional Signs of Glaucoma Identification 

 

In their 2020 study, Gupta et al. [38] introduced a framework that utilizes Deep Archetypal Analysis 

(DAA) to predict the onset of glaucoma several years in advance. This method involves obtaining 

unsupervised convex representations of visual fields through simplex projections, which are shown to be 

more clinically meaningful and discriminative compared to traditional visual field analysis methods. To 

address class imbalance, a class-imbalance bagging approach is implemented. Using the OHTS glaucoma 

clinical trial dataset as a test case, the study demonstrates that combining deep archetypal representation 

and class-balanced bagging leads to improved predictions of glaucoma development well before the 

disease manifests. At the baseline visit, 6,544 visual fields from each eye were deemed reliable and normal 

according to clinical guidelines. Among these, 724 visual fields were labeled as positive and 5,820 as 

negative, as illustrated in Figure 3. The mean age of subjects in the negative group was 55.7 years (SD 

9.6) and in the positive group was 58.8 years (SD 9.0), with a significant difference (P < 0.001) based on 

Generalized Estimating Equation (GEE) analysis. In the negative group, 42% of subjects were male, while 

in the positive group, 56% were male, indicating a higher proportion of males developing glaucoma (P < 

0.001). The mean Intraocular Pressure (IOP) in the negative group was 24.8 mmHg (SD 2.9) and in the 

positive group was 26.1 mmHg (SD 3.3), with a significant difference (P < 0.001). The mean Central 

Corneal Thickness (CCT) in the negative group was 574.7 mm (SD 38.3) and in the positive group was 

558.7 mm (SD 39.0), also showing a significant difference (P < 0.001). The study identifies older age, 

higher IOP, and thinner CCT as risk factors for glaucoma. 

 

 
 

Figure. 3: K. Gupta et al., “Out of 6,544 visual fields analyzed, 5,820 were classified as negative examples, 

indicating eyes that did not develop glaucoma, while 724 were classified as positive examples, indicating eyes that 

did develop glaucoma.” 

 

3.3. Predicting the Development of Visual Fields 

 

Predicting the evolution of visual fields is a complex issue involving multiple components and 

approaches, particularly in the setting of medical illnesses such as diabetic retinopathy, glaucoma, or other 

ocular diseases. 
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3.3.1. Humphrey 24-2 Visual Field Thresholds in Glaucoma Patients: Prediction Based on Optical 

Coherence Tomography Analysis 

 

In a study conducted by Z. Guo et al. [39] (2017), the performance of an enhanced method and three A 

new class of glaucoma patients was tested via the evaluation of alternative predictive algorithms.The 

study set up that individual perceptivity thresholds for the Humphrey Visual Field 24- 2 could be 

prognosticated using Optical Coherence Tomography (OCT) image analysis. Actors passed HVF 24- 2 

and 9- field OCT testing, with the whim-whams fiber NFL and Ganglion Cell and Inner Plexiform (GCL 

IPL) layers segmented into 52 sectors corresponding to the HVF 24- 2 test locations. The study used 

Wilcoxon rank sum test on assessing the correlation, Root Mean Square Error and Limits of Agreement 

between predicted and actual thresholds for the four prediction models. The RGC-AC optimized model 

showed superior results with an R value of 0.74 and RMSE of 5.42 dB, outperforming the Naive, Garway-

Heath, and Donut models. Using the RGC-AC idea and 9-field OCT image analysis, the suggested RGC-

AC optimized prediction algorithm, demonstrated improved performance and reproducibility compared 

to previous methods in predicting HVF 24-2 thresholds for glaucoma patients.        

 

3.3.2. Building Deep Learning Predictions about Future Humphrey Visual Fields 

 

In a study conducted by J. C. Wen et al. [40] in 2019, it was found that deep learning networks can 

effectively learn changes in Spatio-Temporal HVF using unfiltered real-world datasets. These networks 

were able to predict future HVFs up to five years ahead based on a single HVF input data from 24-2 

consecutive HVFs over a twenty-year period were collected from the university database. The researchers 

used a ten-fold cross-validation approach with a held-out test set to develop the model, focusing on 

selecting the model architecture, dataset combinations, and training the time-interval model using transfer 

learning. This led to the creation of an artificial neural network with deep learning capabilities that can 

produce point-wise visual fields predictions. The accuracy of the predictions was assessed by calculating 

the Pointwise Mean Absolute Error and the difference in mean deviation between predicted and actual 

future HVFs. A total of more than 1.5 million perimetry points were analyzed from 32,443 of 24-2 HVFs, 

with the best model, CascadeNet-5, containing twenty million trainable parameters. The point-wise 

PMAE for the test set was 2.47 dB, showing a significant improvement over linear model. The 100 fully 

trained models accurately predicted future HVFs in glaucomatous eyes up to five years ahead, with a 

correlation of 0.92 between predicted and actual MD values and an average difference of 0.41 dB. 

 

3.4. Other works  

 

3.4.1. Extraction of Automated Reports on Visual Field 

 

In their recent study, M. Saifee et al. (2021) [41] present hvf_extraction_script, an open-source tool 

developed for rapid and precise automated extraction of data from HVF reports. The tool is designed to 

simplify the analysis of large HVF datasets and emphasizes the importance of utilizing image processing 

tools to streamline data extraction in research environments. The validation of hvf_extraction_script 

involved analyzing 90 HVF reports with different layouts, totaling 1,530 metadata fields, 15,536 value 

plot data points, and 10,210 percentile data points. A comparison was made between the computer script 

and four human extractors using DICOM reference data. The study assessed extraction time and accuracy 

for metadata, value plot data, and percentile plot data. The results revealed that computer extraction took 

4.9-8.9 seconds per report, significantly faster than the 6.5-19 minutes required by human extractors.  
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The error rate for computer metadata extraction ranged from 1.2-3.5%, while human extraction had an 

error rate of 0.2-9.2% across all layouts. Similarly, computer extraction demonstrated lower error rates 

for value plot data and percentile data points compared to human extraction. Overall, the study highlights 

the efficiency and accuracy of hvf_extraction_script in extracting data from HVF reports, underscoring 

its potential to enhance data analysis in research settings. 

 

3.4.2. PyVisualFields: A Python Package for Visual Field Observation 

 

In their recent study, M. Eslami et al. [42] and colleagues (2023) introduced PyVisualFields, a novel 

software package aimed at addressing a gap in the field by offering visual field analysis capabilities in 

Python. This tool has proven to be effective in ophthalmic research for tasks such as statistical analysis, 

visualization, and predicting visual field progression. With PyVisualFields, researchers can easily develop 

algorithms for clinical applications using advanced artificial intelligence techniques. Initially, the team 

compared the functions of R libraries vfprogression and visualFields before translating them into Python 

using the rpy2 wrapper library. Future versions of PyVisualFields will be independent of R, with 

upcoming releases already planned. The software is open-source and can be downloaded from the GitHub 

repository or PyPI. Additionally, various Jupyter notebooks are available to demonstrate the package's 

features, including data presentation, normalization, plotting, scoring, and progression analysis. 

 

3.4.3. An Open Source, Real-World Set of Perimetry Tests from the Humphrey Field Analyzer 

 

In their 2022 study, G. Montesano et al. [43] created a dataset that allows researchers to access Visual 

Field (VF) data for various research purposes, such as studying VF behavior, comparing clinical 

outcomes, and developing new machine learning algorithms. The dataset includes sensitivities extracted 

from HFA 24-2, stimulus III VFs, and calculations for Total Deviation (TD), mean TD (MTD), pattern 

deviation, and Pattern Standard Deviation (PSD). Progression analysis was performed using simple linear 

regression on global, regional, and pointwise values for VF series with more than four tests over at least 

four months. The dataset comprises 28,943 VFs from 7248 eyes of 3871 patients, with progression data 

available for 2985 eyes from 1579 patients. The median age of the patients was 64 years, with a follow-

up period of more than 2 years. Baseline MTD was -4.51 dB, and baseline PSD was 2.41 dB. Where 

progression analysis was possible, eyes showed a decrease in MTD of -0.10 dB per year. VFs 

demonstrating deep localized defects with high PSD values were visually inspected and were found to 

align with neurologic or glaucomatous VFs. Sensitivity values were compared to printouts for a small 

number of tests and were confirmed to be accurate. 

 

The next section discusses the evaluation of all the scientific papers mentioned previously and the possible 

future work that can be done. Table1 presents the outcomes derived by researchers utilizing various 

models and databases, along with the research objectives they pursued. The researchers employed 

different models and databases to achieve their research goals. 
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Table 1 Summary of studies using Humphry visual Field for glaucoma Progression 
 

Author Year Aim Dataset Model Results 

Z. Guo et 

al.,[39] 

2017 The RGC-AC optimized 

predictive algorithm, 

combining 9-field OCT 

image analysis and the 

RGC-AC concept, 

111glaucoma 

patients (HVF 24-2 

& 9-field OCT) 

RGC-AC 

Garway-Heath 

Donut 

Naïve 

The study found that RGC-

AC, Naïve, Garway-Heath, 

and Donut had varying 

degrees of noise reduction. 

J. C. Wen 

et al.,[40] 

2019 Deep learning networks 

them to analyze spatial and 

temporal variations in 

HVFs and predict HVFs up 

to 5.5 years in advance 

using raw real-world data 

sets. 

Data points were 

collected from 

sequential HVF-

24-2 between the 

years 1998 - 2018 

in a database at a 

university. 

CascadeNet-5 The test set's point-wise 

PMAE was 2.47 dB. 

 

K. Gupta 

et al.,[38] 

2020 Create a framework that can 

predict early signs of vision 

loss in glaucoma using 

convex representations 

derived from the DAA. 

A total eye's 6,544 

visual fields were 

evaluated; 724 of 

these were 

classified as 

positive, and 5,820 

as negative (30-2 

HVFs). 

Deep 

Archetypal 

Analysis 

(DAA) 

In the negative and positive 

groups, the mean CCT of 

the eyes was 574.7 mmHg 

(38.3) and 558.7 mmHg 

(39.0). 

Z. Zhou et 

al.,[37] 

2020 AI model with high 

accuracy created to mimic 

visual manifestations in 

individuals with visual field 

defects. 

3,263 trustworthy 

24-2 HVFs were 

among the 3,660 

HVFs that were 

gathered as data 

samples. 

 

VGG19 Up to 89% of the damage 

type of the VF defects could 

be predicted with accuracy. 

 

M Saifee 

et al.,[41] 

2021 Introduces 

hvf_extraction_script, a tool 

for automated data 

extraction of HVF reports. 

90 HVF reports 

were validated 

using three distinct 

report layouts (10-

2, 24-2, or 30-2 test 

pattern). 

 

Optical 

Character 

Recognition 

(OCR) 

A 98% accuracy rate for 

human extraction and a 

99.3% accuracy rate for 

computer extraction  

 

G. 

Montesano 

et al.,[43] 

2022 Open access dataset VF 

dataset 

Progression 

calculation was 

performed for 1579 

patients' 2985 eyes. 

 

linear 

regression 

The baseline PSD was 2.41 

dB, and the baseline MTD 

was −4.51 dB 

M. Eslami 

et al.,[42] 

2023 Designed Python package 

for VF analysis in 

ophthalmic research.  

National Institutes 

of Health 

R libraries 

Python 

Language 

The developed Python 

package can be installed 

from PyPI and is accessible 

as open-source software. 

 

 

4. Datasets 

 

Ophthalmology datasets are valuable resources for researchers developing machine learning and artificial 

intelligence applications in eye care. Here's a breakdown of where you can find them: 
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4.1. Humphrey Field Analyzer at the University of Washington dataset 

 

The UWHVF dataset is a useful tool for researchers creating new techniques for analyzing VF data and 

for enhancing the diagnosis and treatment of glaucoma because it includes data from over 28,000 visual 

field tests [43]. 

 

4.2. Harvard Ophthalmology Lab Dataset 

 

Included in the Harvard Ophthalmology AI Lab Datasets, the Harvard FairVision dataset comprises 

30,000 samples. Data from 30,000 patients with three main types of eye diseases are included in this [44]. 

 

4.3. A Brazilian Multilabel Ophthalmological Dataset 

 

This dataset provides a collection of retinal images from a Brazilian patient population and is accessible 

on PhysioNet. More than 16,000 photos from more than 8,500 patients are included in it [45]. Details for 

each of the datasets mentioned are displayed in Table 2. 

 
Table 2: Comparison between the publicly available ophthalmology datasets. 

 

Dataset Name No. of 

Sample 

Contain 

UWHVF dataset 

 

28,943 Advancement Pointwise sensitivities, excluding patient age, gender, and 

laterality were extracted from HFA 24-2 visual fields. 

Harvard Ophthalmology AI 

Lab Dataset 

 

30,000 This includes the three primary eye conditions of glaucoma, diabetic 

retinopathy and age-related macular degeneration. 

 

A Brazilian Multilabel 

Ophthalmological Dataset 

 

16,266 

images 

Color fundus retinal photos are included, along with quality control 

artifacts, focus, illumination, image field, and anatomical parameters of the 

macula, optic disc, and vessels. 

 

5. Experimental Result and Discussion 

 

5.1. Experimental Results 

 

This section presents the results of our comparative study on the performance of three models: RGC-AC, 

CascadeNet-5, and Linear Regression. The primary objective was to evaluate these models on key 

performance metrics in the context of visual field screening in glaucoma patients using Humphrey field 

analysis. It is applied to each study separately and the results are presented. 

This section presents the results of our comparative study with previous studies using the UWHVF 

dataset. The primary objective was to evaluate the effectiveness of the model in terms of accuracy. The 

dataset used in this study is the UWHVF, which contains 2985 eyes from 1579 patients. 

The RCC-AC model is evaluated using 3-fold fitting to each of the 108 candidates, for a total of 324 

RGC-AC fits R = 0.91. 

We used the Matplotlib library and the Seaborn library to draw charts that help in analyzing the 

performance of the prediction model, as the dots scattered in blue represent the true values on which the 

model was tested versus those that the model predicted based on the input data. Through this chart, we 

can see how close the predicted values are to the true values, as shown in Figure 4. 
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Figure 4: Real Value vs Predicted Value 

 

Errors, which are the differences between the true values and the expected values, were calculated with 

the probability density curve in purple bars shown in Figure 5. Our understanding of this model’s 

performance indicates that the model predicts the values accurately on average because the distribution 

is centered around zero. In the pattern analysis, there were no long tails in either direction. This indicates 

the absence of some predictions that are very far from the true values. This chart provides a visual way to 

understand the distribution of errors made by the model, and is an essential part of evaluating model 

performance in machine learning. 

Residuals are visually distributed in orange in Figure 6, making it easier to understand how spread out 

the values are. The chart displays outliers as individual marks that lie outside the "whiskers" extending 

from the box. 

 

 
 

Figure 5: Distribution of Errors                                                 Figure 6: Boxplot for errors 

 

The CascadeNet-5 model is evaluated and the performance accuracy was 98% compared to the accuracy 

mentioned in the study 95% [40]. Figure 7 illustrates the confusion matrix where the upper-left box 

represents points that were correctly classified as “positive” and actually have a positive value, the upper-

right box represents points that were incorrectly classified as “negative” and actually have a positive 

value, and the lower-left box represents points that were incorrectly classified as "Negative" and actually 

have a negative value, the lower right box lists points that are correctly classified as "Negative" and 

actually have a negative value. 
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Figure 7: An image showing the positive value and negative value 

 

The linear regression model was evaluated and the results were obtained RMSE (Root Mean Squared 

Error): 0.29, R^2: 0.64. 

The matplotlib.pyplot library was used to create the graph. The scatter lines shown in blue show actual 

values versus predicted values. A line was drawn representing the ideal relationship where the expected 

values should be equal to the actual values. Points were placed on the horizontal and vertical axes to 

define the range of the line. This ensures that the line extends from the minimum to maximum of the 

actual values and sets the line color to red. Figure 8 shows a plot of actual and expected values. 

 

 
 

Figure 8: The plot of actual and forecast values. 

 

The analysis involved comparing findings from prior studies utilizing the UWHVF databases. The table 

displays the specific model that underwent testing. Overall, our investigation included a comparison of 

outcomes from earlier research conducted with the UWHVF databases [43]. The table 3 presents the 

model that was subjected to testing. 

Each of the studies mentioned has a different purpose; however, the outcomes all pertain to results derived 

from the HVF device. They may, therefore, differ in what they precisely seek to ascertain, yet they are 

similar in the aspect of measuring effects of the HVF device. 
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Table 3: Comparison of previous studies using Humphrey visual field for glaucoma progression 
 

First 

Author 

Dataset Model Result The Model 

Used 

Dataset 

Used 

Evaluation 

Z. Guo et 

al., [39] 

XNAT 

ophthalmology 

research database 

RGC-AC 

 

RGC-AC (R 

= 0.74,95% 

CI, 0.67–

0.76) 

 

RGC-AC UWHVF 

dataset  

RGC-AC (R = 1.25 

dB; 95% CI, 1.12–1.37 

dB)  

J. C. Wen 

et al., [40] 

Data collected 

from sequential 

HVF-24-2 between 

the 20 years in a 

database at a 

university. 

CascadeNet-

5 

Accuracy: 

95%  

CascadeNet-

5 

UWHVF 

dataset  

Accuracy:98% 

 

G. 

Montesano 

et al., [43] 

UWHVF dataset  Linear 

Regression 

The baseline 

PSD was 

2.41, and the 

baseline 

MTD was 

−4.51. 

 

Linear 

Regression 

UWHVF 

dataset  

RMSE: 

0.2961621880350672 

R^2: 

0.6404260289584186 

 

 

5.2.Discussion 

 

Recent advancements in artificial intelligence (AI) have shown promising applications in the field of 

ophthalmology, particularly in the analysis of Humphrey visual field tests and the diagnosis of glaucoma. 

A comprehensive survey conducted on the utilization of AI in these areas revealed that machine learning 

algorithms, especially deep learning models, significantly enhance the accuracy and efficiency of 

detecting visual field defects and glaucomatous progression. The integration of AI in Humphrey field 

analysis not only reduces the subjectivity associated with traditional methods but also provides a robust 

framework for early diagnosis and monitoring of glaucoma, potentially improving patient outcomes 

through timely intervention. 

In this study, we employed three distinct models to analyze the UWHVF dataset: Linear Regression, 

RGC-AC, CascadeNet-5, and Linear Regression. Each model was selected for its unique strengths and 

potential to offer diverse perspectives on the data.The RGC-AC analysis results ranged from 1.12–1.37 

dB with a 95% confidence interval, with a mean observed change of 1.25 dB. This suggests that the 

expected change in the relationship between the retinal ganglion cells (RGC) and the anterior chamber 

(AC) is within these limits, providing important insights into how glaucomatous changes affect RGCs. 

These results highlight the importance of understanding the effects on retinal ganglion cells in the 

development of glaucoma. 

As for the performance of CascadeNet-5, it showed an exceptional accuracy of 98%. This result is pivotal 

in sensitive fields such as glaucoma diagnosis, where accurate data classification is of paramount 

importance. These results confirm the model’s ability to correctly classify data, highlighting its 

effectiveness in clinical applications. 

On the other hand, the linear regression analysis results showed an RMSE value of 0.296, indicating low 

prediction errors and high quality of the predictive model. The R² value of 0.640 indicates that the model 

explains about 64% of the variance in the data, which indicates its good performance. Since the data used 

is purely numerical data, linear regression is considered the most suitable for analyzing this type of data, 

as it reflects the linear relationship between variables more accurately, compared to other models that 
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may be less suitable for dealing with numerical data. Despite the good performance of the model, there is 

room for improving the predictions by introducing additional features or exploring other models. 

This holistic analysis not only enhanced our understanding of the UWHVF data but also underscored the 

importance of employing a diverse set of models in data analysis tasks. 

 

6. Conclusion and Future Work  

 

In conclusion, the integration of Artificial Intelligent techniques in visual field assessment using the HFA 

represents a significant shift with the potential to greatly enhance ocular health outcomes. By addressing 

technical, clinical, and ethical challenges, the ophthalmic community can utilize AI to provide more 

accurate, efficient, and patient-centered care. As AI continues to advance, its role in visual field 

assessment is likely to expand, offering new opportunities for early diagnosis, personalized treatment, 

and improved management of ocular diseases. 

Therefore, future systems should integrate data about visual field from HFA and incorporate diagnostic 

modalities such as optical coherence tomography, fundus photography, and genetic data for 

comprehensive management. These possibly enable the AI-driven diagnosis and treatment 

recommendation with greater resolution and replicability. Currently, most AI models cannot be adapted 

to individuals; personalized models may be generated from patient history, demographical data, and 

patterns in the onset and development of the diseases. Future improvements could come in the form of 

making the system analyze in real-time during HFA testing. In that case, clinicians will easily give 

immediate feedback and change the test protocol dynamically to focus on concerns. For clinical 

acceptance, it is very important to make models more interpretable. More work needs to be performed to 

develop explainable AI frameworks that can give very transparent insights into the decision-making 

process involved. Advanced data augmentation, synthetic data generation, and domain adaptation 

methods are required to make the models robust and generalizable across populations, as visual field data 

is usually small in size. 

The AI systems could be tuned toward predictive modeling to establish the patients who are likely to 

develop visual field defects even before clinical symptoms become manifest. These are the sorts of pro-

active approaches necessary for the revolutionizing of prevention in ophthalmology. Lightweight deep 

models of AI should be developed that are deployable on low-resources devices to ensure accessibility to 

such advanced diagnostic tools in remote and underserved regions.  
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