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Abstract: The increasing collection and analysis of sensitive personal data necessitates the development 

of robust Privacy-Preserving Data Mining (PPDM) methods. PPDM techniques are essential for 

extracting valuable insights from sensitive data while ensuring the maintenance of individuals’ privacy. 

A critical aspect of implementing PPDM involves assessing the efficacy of these techniques in 

safeguarding privacy. However, despite the growing significance of PPDM, there remains a limited 

comprehensive understanding of the metrics used to evaluate their effectiveness, particularly concerning 

privacy preservation. This paper addresses this research gap by presenting an extensive study of privacy-

level metrics for PPDM methods. The study examines data privacy metrics, which quantify the uncertainty 

faced by adversaries attempting to infer original sensitive data from transformed datasets. In addition, 

the paper analyzes results privacy metrics, which assess the risk of sensitive information disclosure from 

data mining outputs. Besides, the paper presents a new classification for  privacy-level metrics based  on 

the phase of PPDM processes in which they can be utilized. Moreover, the study provides a detailed 

analytical discussion of privacy-level metrics used in PPDM, examining their strengths and limitations 

while demonstrating their implications for practical applications. Furthermore, the paper highlights 

several considerations and challenges associated with measuring privacy within different PPDM methods 

in the absence of a universally accepted definition. By providing a comprehensive overview of existing 

privacy-level metrics, the proposed study establishes a vital foundation for the evaluation of PPDM 

methods and contributes to the advancement of responsible and trustworthy data mining practices. 
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1. Introduction 

 

In today's data-driven world, data mining has become a major source of essential approaches and tools 

for extracting valuable insights and knowledge from large datasets [1,2]. In addition, the discovery of 

valuable information from extensive datasets is crucial for advancement across various domains, 

including healthcare, banking and finance, and marketing [3-6]. However, this advancement must be 

carefully balanced with the critical need to protect individuals’ privacy, particularly when handling 

sensitive information. Privacy-Preserving Data Mining (PPDM) methods have emerged as a vital solution 

to this challenge, enabling researchers and practitioners to identify hidden patterns and knowledge, 

facilitate data analysis, and protect sensitive information from being disclosed [7-9]. Besides, PPDM 

encompasses a wide range of methods that operate across different phases of the data lifecycle, from data 

collection and publishing to data mining output analysis [7]. In addition, these methods employ various 

techniques to mitigate privacy risks and restrict the disclosure of sensitive information during and after 

the data mining process. These include data randomization and perturbation, data anonymization, 

cryptographic techniques, association rule hiding, and query auditing [10-13]. The primary objective of 

these techniques is to transform the data in a way that prevents the disclosure of sensitive information 

while maintaining its usefulness for further analysis tasks [14-16].  

Several PPDM algorithms have been proposed in the literature [10-13]. However, evaluating their 

effectiveness, which necessitates well-defined metrics capable of quantifying the level of privacy 

protection they offer, remains  challenging. Therefore, a comprehensive understanding of privacy-level 

metrics is crucial for assessing the effectiveness of PPDM techniques and guiding the development of 

more robust privacy-preserving solutions. Besides, this understanding is vital to ensure that PPDM 

methods achieve an optimal balance between data utility and privacy preservation [17-18]. This paper 

focuses on a crucial aspect of PPDM methods’ evaluation: privacy-level metrics. Privacy-level metrics 

are critical for assessing the effectiveness of PPDM techniques in safeguarding against the disclosure of 

sensitive information while preserving data utility. Furthermore, these metrics quantify the degree of 

uncertainty associated with predicting hidden sensitive information, with higher levels indicating stronger 

privacy protection. In the existing literature, privacy-level metrics are categorized into two primary types: 

data privacy metrics and results privacy metrics [11], [19]. Data privacy metrics focus on measuring the 

extent to which original data values are protected from unauthorized disclosure. Additionally, these 

metrics quantify the risk that an adversary may infer sensitive information about individuals’ records from 

the transformed data. On the other hand, results privacy metrics concentrate on assessing the privacy of 

the aggregated knowledge extracted from the data, such as patterns, models, and rules. Moreover, these 

metrics evaluate the potential for an adversary to uncover sensitive insights or knowledge from the data 

mining results, even if the individuals’ records are adequately protected. Despite the significance of 

privacy-level metrics, a thorough and systematic study of these metrics remains lacking in existing 

literature. Aside from that, some studies have addressed specific aspects of PPDM evaluation; however, 

a comprehensive and unified treatment of privacy metrics is still required. This paper aims to consider 

this gap by presenting an extensive evaluation study of privacy-level metrics for PPDM methods. This 

underscores the necessity of the current study, which aims to deliver a comprehensive analysis of privacy-

level metrics and their applicability to various PPDM methods, thereby contributing to a more robust and 

standardized evaluation framework for PPDM. 
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The main contributions of this paper can be summarized as follows: (1) The paper addresses the existing 

research gap by introducing a comprehensive examination of present privacy-level metrics for PPDM 

methods, including data privacy and results privacy metrics. (2) We introduce a new classification for 

privacy-level metrics grounded in the specific phase of PPDM processes in which they are most 

applicable. (3) The study will go beyond just enumerating privacy-level metrics by providing an in-depth 

analysis of their strengths and limitations, and implications for practical applications. (4) The paper 

emphasizes the critical consideration and challenges of measuring privacy within PPDM methods, as well 

as the selection of appropriate privacy metrics. The rest of the paper is structured as follows: Section 2 

introduces a foundational understanding of privacy in the context of data mining. Section 3 defines 

privacy-level metrics and explains how they are used to evaluate different PPDM techniques. Section 4 

provides a detailed analysis of privacy-level metrics of the data collection phase. Section 5 presents an 

in-depth discussion of privacy-level metrics of the data publishing phase. Section 6 examines privacy-

level metrics of the data mining phase. Section 7 analyzes and discusses various privacy-level metrics 

used in PPDM, examining their strengths, limitations, and implications for practical applications. Section 

8 examines the key challenges and considerations in measuring privacy within PPDM methods. Finally, 

Section 9 concludes the paper. 

 

2. Background: Privacy in Data Mining Context 

 

Defining privacy presents inherent challenges due to its subjective nature, which relies on individual 

perceptions, cultural norms, and societal values [11], [20]. Although a single, universally accepted 

definition remains elusive, a common theme among the diverse interpretations emphasizes an individual's 

right to control the collection, storage, access, and utilization of their personal information [4], [19], [21]. 

However, in the context of data mining, privacy concerns emerge when analyzing datasets that contain 

sensitive personal information, which may result in the unintended disclosure of confidential details or 

the identification of individuals. Thus, the escalating volume and variety of collected data, combined with 

the advancing sophistication of data mining techniques, further intensify these concerns. PPDM methods 

seek to balance the advantages of data-driven knowledge discovery with the critical necessity of 

safeguarding individual privacy [19]. Therefore, these techniques are designed to extract valuable insights 

from vast datasets while concurrently ensuring that the disclosure or inference of private information is 

prevented during the mining processes and in the resultant outputs. PPDM methods categorize the 

attributes of input microdata tables into three distinct types: Explicit Identifiers (EIs), Quasi-Identifiers 

(QIDs), and Sensitive Attributes (SAs) [7], [22,23]. EIs are attributes that can directly identify individuals, 

thereby posing a significant risk to data privacy. QIDs are attributes that may identify individuals when 

combined or linked with other publicly available datasets. On the other hand, SAs represent attributes 

containing personal information that individuals typically wish to keep private and prefer not to have 

inferred by unauthorized parties. For example, consider a medical dataset containing the patient's records 

and having the following attributes (name, age, gender, zip-code, disease). In this dataset, the attribute 

(name) represents the EI, the attributes (age, gender, zip-code) represent the QIDs, and the attribute 

(disease) is the SA. Another instance is a dataset of a certain business organization containing the 

employees’ records and having the following attributes (name, NID, age, gender, address, salary). In this 

dataset, the attributes (name, NID) are the EIs, the attributes (age, gender, address) are the QIDs, and the 

attribute (salary) is considered the SA. In addition, PPDM methods often modify or transform the original 

data to obscure sensitive information [7], [22,23]. However, these modifications can inadvertently reduce 

the data's utility for analysis, potentially leading to less accurate or less meaningful results. Hence, finding 

the optimal balance between privacy preservation and maintaining data utility represents a central 

challenge in PPDM. 
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Besides, privacy vulnerabilities exist at the various phases involved in the data lifecycle, from the initial 

collection, sharing, or publishing to conducting the desired data mining processes [7]. Consequently, 

PPDM methods are specifically designed to mitigate these vulnerabilities across these various stages. 

Various PPDM methods, such as randomization or perturbation, can be applied during the data collection 

phase to protect against privacy breaches, ensure secure transmission, and anonymize data at the 

centralized data source. In distributed data scenarios, where multiple parties collaborate to analyze data 

without fully sharing their individual datasets, privacy concerns emerge regarding the prevention of local 

information leakage during computation [10-12]. This necessitates the use of cryptographic protocols that 

enable joint computation on private data without disclosing the underlying data to other parties. These 

protocols encompass secure multiparty computation, homomorphic encryption, and secret sharing [7], 

[11], [24]. In the data publishing phase, when releasing datasets publicly or sharing them with third parties 

for analysis, it is essential to anonymize records to prevent the re-identification of individuals [2,3]. This 

process involves employing anonymization techniques such as 𝑘-anonymity, 𝑙-diversity, and 𝑡-closeness, 

which aim to prevent the disclosure of sensitive information by ensuring that individuals are 

indistinguishable within groups [2,3]. Even after implementing privacy-preserving techniques in earlier 

stages, the outputs of data mining algorithms may inadvertently reveal sensitive information [7], [10-13]. 

For example, certain association rules or classification models could unintentionally disclose private 

details about individuals or groups. Consequently, result-oriented PPDM methods are designed to address 

these vulnerabilities by modifying data mining algorithms or carefully analyzing and modifying outputs 

to prevent the disclosure of sensitive patterns. These methods include query auditing, downgrading 

classifier effectiveness, and association rule hiding [7], [11], [24]. 

 

3. Privacy-Level Metrics 

 

Due to the absence of a standardized definition of privacy, quantifying the provided privacy-preserving 

level presents a challenge [11], [21]. Privacy-level metrics address this issue by offering a means to assess 

the effectiveness of data protection measures in relation to potential privacy breaches, particularly within 

the context of PPDM [19]. These metrics are essential for several reasons: (1) They facilitate the 

evaluation of PPDM techniques by allowing for the comparison of various methods and the selection of 

the most effective approach for a specific application and desired level of privacy. (2) They help quantify 

privacy risks by assessing the likelihood of various types of privacy breaches, such as identity disclosure 

or sensitive attribute disclosure. (3) They inform the design of newly proposed PPDM methods by 

identifying the strengths and limitations of existing techniques as highlighted by privacy metrics, thereby 

enabling researchers to develop more robust and effective methodologies. Aside from that, evaluating the 

effectiveness of PPDM techniques requires an accurate understanding of the various dimensions of 

privacy. A single metric is often insufficient to capture the complex trade-off between data utility and 

privacy protection. Consequently, a structured categorization of privacy-level metrics is essential to 

establishing a comprehensive evaluation framework. Thus, in the literature, privacy-level metrics are 

broadly categorized into two main types based on the aspect of the privacy-preserving process they 

measure: data privacy metrics and results privacy metrics [11], [19]. The primary objective of data privacy 

metrics is to assess the effectiveness of PPDM techniques in protecting the transformed individuals' 

records from any potential unauthorized disclosure. Besides, these metrics focus on evaluating the extent 

to which sensitive information can be inferred from the modified data. They measure how effectively the 

PPDM technique conceals sensitive information within the dataset after alterations for privacy protection 

and quantify the uncertainty or potential vulnerability of individual records following the application of 

specific privacy-preserving transformations. In contrast, results privacy metrics shift the focus to the 

outputs generated by applying data mining algorithms to the transformed data. Hence, the main objective 
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of these metrics is to evaluate whether the outputs inadvertently disclose sensitive information about 

individuals’ records included in the original dataset. More specifically, these metrics aim to determine 

whether an attacker can leverage the data mining outputs, such as association rules or classification 

models, to infer sensitive information about the original data. Indeed, it is essential to consider both data 

privacy and result privacy metrics when evaluating the effectiveness of a PPDM technique. A technique 

may perform exceptionally well in safeguarding privacy at the data level; however, it may still be 

susceptible to privacy breaches when examining the information disclosed by the results of data mining.  

Evaluating the effectiveness of a PPDM method in relation to the provided privacy level should be 

considered across all phases, including data collection, data publishing, and the data mining phase. 

Consequently, various privacy-level metrics are employed in each phase to quantify the degree of privacy 

protections offered. Accordingly, we classify the privacy-level metrics examined based on the associated 

phase of PPDM in which they are most applicable. Figure 1 illustrates the new classification of privacy-

level metrics of PPDM methods. In the following sections, we provide a comprehensive discussion of 

various privacy-level metrics, building upon the definitions and categories previously outlined. 

 

 
 

Figure. 1: The new classification of privacy-level metrics of PPDM methods. 

 

4. Privacy-Level Metrics of the Data Collection Phase 

 

4.1. Confidence level 

 

The confidence level metric [25], commonly employed with additive-noise-based randomization 

techniques, evaluates the accuracy with which an attacker can estimate an individual's original data value 

from the randomized data. This metric quantifies the uncertainty an attacker encounters when attempting 

to identify the original value. A high confidence level signifies a lower degree of privacy protection, as it 

suggests an enhanced ability to approximate the original value. For instance, if an attacker can estimate 
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an original value to fall within the interval [𝑥1, 𝑥2] with 95% confidence, the interval (𝑥2 − 𝑥1) denotes 

the extent of privacy at that confidence level. However, a notable limitation of this metric is its inability 

to account for the distribution of the original data. As a result, an attacker may be able to refine the 

potential range of the original value to a narrower interval than [𝑥1, 𝑥2], while maintaining the same 

confidence level, by leveraging knowledge of the original data distribution. 

 

4.2 Average Conditional Entropy 

 

Average conditional entropy metric addresses the limitations of the confidence level metric by 

incorporating the original data distribution [26]. It utilizes the concept of information entropy to quantify 

the remaining uncertainty regarding the original data (𝐴) in light of the transformed, perturbed data (𝐵). 

Information entropy, a fundamental measure of uncertainty in information theory, is denoted by 𝐻(𝐴) 

and quantifies the average amount of information contained in a random variable 𝐴. In the context of 

PPDM, a higher average conditional entropy indicates greater uncertainty for an attacker attempting to 

infer the original values, thereby enhancing privacy preservation. Given a random variable 𝐴 that 

represents the original data, along with the knowledge of another random variable 𝐵, which denotes the 

perturbed data, the average conditional entropy metric, denoted by 𝐻(𝐴|𝐵), can be described as follows.         

                                                           𝐻(𝐴|𝐵) =  2ℎ(𝑎|𝑏)                                                                                   (1) 

Where ℎ(𝐴|𝐵) represents the conditional differential entropy of 𝑋, and can be defined as follows.                                     

                                                     ℎ(𝐴|𝐵)

=  − ∫ 𝑓𝐴,𝐵(𝑎, 𝑏) log2 𝑓𝐴|𝐵=𝑏(𝑎) 𝑑𝑎 𝑑𝑏
 

Ω𝑎,𝑏

                                        (2) 

Where 𝑓𝐴(. ) and 𝑓𝐵(. ) represent the density functions of 𝐴 and 𝐵, respectively. Therefore, this metric 

evaluates potential information leakage from protected data to assess privacy. A higher conditional 

entropy indicates a greater difficulty for an attacker to infer the original values from the perturbed data. 

However, calculating the average conditional entropy necessitates an understanding of the perturbing 

distribution, which may not always be readily available or easily estimated, particularly in complex 

PPDM scenarios. 

 

4.3 Variance 

 

The variance metric [27], commonly employed with multiplicative noise randomization techniques, 

evaluates privacy by the variance between the original data value (𝐴) and the respective perturbed data 

value (𝐵). This metric can be expressed as follows. 

                                                                 𝑆𝑒𝑐 =  
𝑉𝑎𝑟 (𝐴 − 𝐵)

𝑉𝑎𝑟 (𝐴)
                                                                                (3) 

Where 𝑆𝑒𝑐 represents the maintained security level. This variance quantifies the extent to which the 

perturbed data deviates from the original data. A higher variance indicates greater difficulty in estimating 

the original values from the modified values. Consequently, a higher 𝑆𝑒𝑐 value, indicating a larger 

variance difference, signifies a higher level of privacy protection. Additionally, this metric quantitatively 

measures the extent of distortion introduced by the applied randomization process. Therefore, a higher 

variance suggests a greater disparity between the original and perturbed data, thereby increasing the 

difficulty for an attacker to reverse-engineer the original values from the perturbed ones, indicating 

enhanced privacy. 

 

5. Privacy-Level Metrics of the Data Publishing Phase 
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5.1 Semantic Privacy Metrics 

 

The authors in [28] examined semantic metrics for measuring the privacy of anonymized databases 

through generalization and suppression methods commonly employed during the data publishing phase. 

The introduced analysis in the article is particularly relevant in the context of preventing sensitive attribute 

disclosure privacy attack. This attack occurs when an adversary obtains information regarding an 

individual's SAs from an anonymized database [3], [29-30]. Semantic privacy definitions are designed to 

quantify the adversary's knowledge gain about SAs derived from observing published anonymized 

databases. This methodology emphasizes the disparity between the adversary's baseline knowledge and 

the knowledge acquired from the anonymized data. Baseline knowledge refers to the minimum 

information about SAs that an adversary can discern following any form of sanitization process, even 

trivial sanitization in which all QIDs or SAs are removed. Conversely, posterior knowledge encompasses 

the information the adversary acquires about the SAs of a targeted individual from the sanitized table, 

considering the generalized and suppressed quasi-identifiers. The authors introduced formulas for two 

privacy metrics that evaluate the effectiveness of PPDM anonymization methods, utilizing generalization 

and suppression operations to safeguard sensitive information: adversarial knowledge gain (𝐴𝑘𝑛𝑜𝑤) and 

adversarial accuracy gain (𝐴𝑎𝑐𝑐). Both metrics aim to quantify the extent of information that an adversary 

can obtain about sensitive attributes from a sanitized database. Furthermore, these metrics are designed 

to capture the potential for sensitive attribute disclosure, wherein an adversary exploits QIDs to infer 

sensitive information about individuals. We discuss each of the two metrics in the following subsections. 

 

5.1.1 Adversarial Knowledge Gain Metric 

 

This metric measures the average amount of information an adversary gains about SAs by identifying an 

individual's equivalence class within the sanitized database. It's based on the concept of attribute 

disclosure distance (𝐴𝑑𝑖𝑓𝑓), which quantifies the difference between the distribution of SAs within an 

equivalence class and the overall distribution in the entire table. The adversarial knowledge gain metric 

(𝐴𝑘𝑛𝑜𝑤) is mathematically expressed as follows. 

                                                          𝐴𝑘𝑛𝑜𝑤 =  
1

|𝑇|
∑ |〈𝑡〉|.

𝑡𝜖𝜀𝑄

𝐴𝑑𝑖𝑓𝑓(〈𝑡〉)                                                                (4) 

Where |𝑇| represents the total number of records in the original table, 𝜀𝑄 donates the set of representative 

records for each quasi-identifier equivalence class, 〈𝑡〉 represents the quasi-identifier equivalence class 

containing the sanitized record of individual 𝑡, |〈𝑡〉| indicates the number of records within the 

equivalence class 〈𝑡〉, and 𝐴𝑑𝑖𝑓𝑓(〈𝑡〉) is the attribute disclosure distance for the equivalence class 〈𝑡〉. 

Besides, the mathematical formula of 𝐴𝑑𝑖𝑓𝑓(〈𝑡〉 is given as: 

                                                       𝐴𝑑𝑖𝑓𝑓(〈𝑡〉) =  
1

2
∑|𝑝(𝑇, 𝑠𝑖) − 𝑝(〈𝑡〉, 𝑠𝑖)|

𝑙

𝑖=1

                                                     (5) 

Where 𝑙 is the number of possible values for the sensitive attribute 𝑆, 𝑝(𝑇, 𝑠𝑖) denotes the probability of 

the 𝑖𝑡ℎ sensitive attribute value 𝑠𝑖 in the entire table 𝑇, and 𝑝(〈𝑡〉, 𝑠𝑖) is the probability of the 𝑖𝑡ℎ sensitive 

attribute value 𝑠𝑖 within the equivalence class 〈𝑡〉. Essentially, 𝐴𝑘𝑛𝑜𝑤 metric calculates the weighted 

average of attribute disclosure distances for all equivalence classes in the anonymized table, with the 

weights determined by the size of each class relative to the total number of records. A lower value of the 
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adversarial knowledge gain metric (𝐴𝑘𝑛𝑜𝑤) indicates better privacy, as it suggests the adversary gains less 

information from anonymized data. 

 

5.1.2 Adversarial Accuracy Gain Metric 

 

This metric quantifies the adversary's ability to predict a target individual's sensitive attribute by guessing 

the most common sensitive attribute within their equivalence class. It measures the increase in the 

adversary's prediction accuracy compared to a baseline scenario where they only have access to a trivially 

sanitized database. The adversarial accuracy gain (𝐴𝑎𝑐𝑐) metric is mathematically expressed as follows. 

                                             𝐴𝑎𝑐𝑐 = (
1

|𝑇|
∑ |〈𝑡〉|. 𝑝(〈𝑡〉, 𝑠𝑚𝑎𝑥(〈𝑡〉))) −

𝑡𝜖𝜀𝑄

𝑝(𝑇, 𝑠𝑚𝑎𝑥(𝑇))                                  (6) 

Where |𝑇| is the total number of records in the original table, 𝜀𝑄 denotes the set of representative records 

for each quasi-identifier equivalence class, 〈𝑡〉 represents the quasi-identifier equivalence class containing 

the sanitized record of individual 𝑡, |〈𝑡〉| indicates the number of records within the equivalence class 〈𝑡〉, 

𝑠𝑚𝑎𝑥(〈𝑡〉) is  the most common sensitive attribute value within the equivalence class 〈𝑡〉, and 

𝑝(𝑇, 𝑠𝑚𝑎𝑥(𝑇)) is the probability of the most common sensitive attribute value within the equivalence 

class 〈𝑡〉. Basically, the adversarial accuracy gain (𝐴𝑎𝑐𝑐) calculates the ratio between the adversary's 

average prediction accuracy when using the sanitized data and their baseline accuracy when using a 

trivially sanitized database, subtracting 1 to represent the gain. A lower 𝐴𝑎𝑐𝑐 value indicates better 

privacy, as it suggests the adversary's ability to predict sensitive attributes doesn't improve significantly 

after observing the anonymized data. In addition, it is important to note that this metric may underestimate 

the actual information leakage, as it exclusively considers the adversary's ability to predict the most 

common sensitive attribute within each equivalence class. Moreover, it does not account for potential 

shifts in the probabilities of other sensitive attribute values, which could still yield valuable information 

to the adversary. 

 

5.2 Privacy Models with Specific Parameters 

 

In addition to the previously mentioned metrics, various privacy-preserving models, such as 𝑘-anonymity 

[31], 𝑙-diversity [32], 𝑡-closeness [33], and 𝜀-differential-privacy [34], utilize distinct inherent parameters 

as privacy metrics. These parameters (𝑘, 𝑙, 𝑡, 𝜀) do not represent specific formulas, but they serve as 

privacy models that facilitate privacy control by establishing respective parameter values. Besides, these 

parameters directly influence the level of privacy assured by the techniques, as they are predetermined to 

define the desired level of privacy protection. Generally, higher values of these parameters indicate 

stronger privacy protection; however, this may occur at the expense of data utility. For example, in 𝑘-

anonymity, the parameter 𝑘 specifies the minimum number of records in the dataset that must be 

indistinguishable from one another based on the generalized QIDs attributes. Therefore, a higher 𝑘 value 

typically corresponds to enhanced privacy protection, but it may come at the cost of reduced data utility 

[3], [29]. Similarly, 𝑙-diversity, 𝑡-closeness, and 𝜀-differential-privacy utilize their respective parameters 

to regulate the level of privacy protection. The 𝑙-diversity model employs the parameter 𝑙 to quantify the 

diversity of SAs values within each one of the constructed equivalence classes [32]. Furthermore, 𝑡-

closeness utilizes the parameter 𝑡 to limit the difference between the distribution of a sensitive attribute 

in the anonymized data and its distribution in the original data [33]. Moreover, the differential-privacy 

model employs the privacy parameter 𝜀 to regulate the amount of noise added, thereby controlling the 
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level of privacy protection [34]. Thus, these metrics are specific to their corresponding techniques and 

provide a direct means of quantifying the privacy guarantees offered. 

 

6. Privacy-Level Metrics of the Data Mining Phase 

 

While data privacy metrics emphasize the protection of sensitive information within the transformed data 

itself, the results privacy metrics address the potential for privacy violations that may arise from the 

outcomes of data mining processes. Thus, results privacy metrics are designed to evaluate the degree to 

which sensitive information may be inferred or disclosed from the outputs generated by data mining 

algorithms, such as classifiers, association rules, or cluster analysis, applied to transformed data. 

 

6.1 Hidden Failure Metric 

 

In the context of pattern recognition data mining techniques, such as classification and association rule 

mining, the objective of various PPDM algorithms is to achieve zero hiding failure [19]. This means that 

all sensitive patterns are effectively hidden from unauthorized discovery. However, striving for absolute 

hiding failure may inadvertently compromise valuable, non-sensitive information. As more sensitive 

patterns are hidden, there is an increased risk of obscuring or distorting non-sensitive patterns that could 

be valuable for knowledge discovery. Consequently, the primary measure to evaluate is Hiding Failure 

(HF). HF can be quantified by calculating the percentage of sensitive information that remains 

discoverable following the data anonymization process. Ideally, this percentage should be as close to 0 as 

possible. One approach for assessing hiding failure is to compare the number of restrictive patterns 

discovered in the original database to those identified in the sanitized database. As such, the HF metric is 

widely recognized for this purpose [35]. The HF metric quantifies the balance between privacy and 

knowledge discovery, calculating the ratio of sensitive patterns successfully hidden by the PPDM 

algorithm to the total number of sensitive patterns in the original data [19]. While an HF of 0 indicates 

that all sensitive patterns are effectively hidden, this may come at the cost of losing non-sensitive 

information [35]. Accordingly, the HF metric can be described as follows. 

                                                                    𝐻𝐹 =  
#𝑅𝑝(𝐷′)

#𝑅𝑝(𝐷)
                                                                                    (7) 

Where #𝑅𝑝(𝐷′) represents the number of sensitive patterns found in the anonymized dataset (𝐷′), and 

#𝑅𝑝(𝐷) represents the number of sensitive patterns present in the original dataset (𝐷). A lower HF value 

indicates that the PPDM method is more effective at hiding sensitive patterns and preventing their 

disclosure through data mining results. However, low HF value does not necessarily imply that no 

sensitive information is leaked. It is essential to recognize that some non-sensitive patterns may also be 

hidden during the privacy preservation process. 

 

7. Analysis and Discussion 
 

PPDM has gained significant importance in the context of big data and growing privacy concerns. PDM 

emphasizes the protection of sensitive information within datasets during and after data analysis processes 

[7]. A critical aspect of PPDM is the assessment of privacy levels achieved through various techniques. 

Several metrics have been proposed to quantify the extent of privacy preservation achieved by these 

methods [19]. These privacy-level metrics serve as essential tools for evaluating the effectiveness of 

PPDM approaches, facilitating a balance between privacy and data utility. This section analyzes and 

discusses several privacy-level metrics used in PPDM as addressed in our study, examining their 

strengths, limitations, and implications for practical applications. 
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7.1 Privacy-Level Metrics of the Data Collection Phase 

 

As a data privacy metric, the confidence level metric offers a straightforward approach to quantifying 

uncertainty in estimating original values from randomized data [25]. Its primary strength lies in its 

simplicity and ease of interpretation. However, this metric fails to consider the distribution of the original 

data, which can lead to inaccurate privacy assessments in certain scenarios. To address the limitations of 

the confidence level metric, researchers have introduced the average conditional entropy metric [26]. This 

metric integrates the original data distribution into the privacy calculation, offering a more nuanced 

assessment of privacy levels. However, it increased computational complexity and required knowledge 

of the joint density function of both the original and randomized data, which may not always be readily 

available. Furthermore, in the context of multiplicative noise randomization, variance metric serves as a 

straightforward measure of the extent to which the original data can be estimated from the perturbed data 

[27]. While this measure is effective for this specific technique, its applicability is limited to multiplicative 

noise randomization and may not be suitable for other privacy-preserving methods. 

 

7.2 Privacy-Level Metrics of the Data Publishing Phase 

 

As for semantic privacy metrics, the adversarial knowledge gain metric quantifies the average amount of 

information an adversary acquires regarding sensitive attributes across all individuals in a database [28]. 

Its strengths include its ability to capture average information gain, as well as its foundation in the concept 

of the attribute disclosure distance. This semantic grounding makes the metric more informative than 

purely syntactic metrics, such as 𝑘-anonymity. However, the calculation of adversarial knowledge gain 

can be computationally intensive for large datasets with numerous equivalence classes, and it may be 

sensitive to the specific distribution of sensitive attribute values within the dataset. In the same context, 

the adversarial accuracy gain metric directly measures the improvement in an adversary's ability to predict 

a target individual's sensitive attribute after observing the sanitized data [28]. Compared to the adversarial 

knowledge gain metric, its strengths include intuitive interpretation and computational efficiency. 

Nevertheless, the adversarial accuracy gain metric is primarily concentrated on the adversary's ability to 

predict the most common sensitive attribute value, potentially underestimating the actual privacy risks 

involved. Additionally, its scope is somewhat restricted, primarily representing the adversary's ability to 

perform a specific type of attack. 

Regarding the privacy models with specific parameters, the 𝑘-anonymity metric introduced the concept 

of group-based anonymization [3]. This model complicates the process of linking records to individuals 

when at least 𝑘 − 1 other records share identical quasi-identifiers. Its strengths include its straightforward 

concept and the availability of various implementation algorithms. However, 𝑘-anonymity is vulnerable 

to several types of privacy disclosure attacks [3] [29]. Furthermore, it does not address scenarios in which 

a single individual may have multiple records within the dataset. To address the limitations of 𝑘-

anonymity, researchers have proposed the 𝑙-diversity model. This approach requires the presence of at 

least 𝑙 “well-represented” values for SAs within each equivalence class. While 𝑙-diversity provides 

enhanced protection against certain privacy disclosure attacks, the determination of ‘well-represented’ 

values can be subjective and may vary depending on the specific instantiation of 𝑙-diversity. Moreover, it 

does not consider the distribution of sensitive attribute values, making it vulnerable to skewness attacks 

[3] [29]. In the same context, the 𝑡-closeness metric further enhances the concept of 𝑙-diversity by 

ensuring that the distribution of sensitive attributes within each equivalence class closely resembles the 

distribution in the original dataset. This approach effectively mitigates the skewness attack limitation 

associated with 𝑙-diversity. However, selecting an appropriate 𝑡 value involves a trade-off between 
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privacy and data utility. In addition, a very small value of 𝑡 may necessitate significant data generalization, 

which could reduce the dataset's utility for analysis. Besides, 𝜀-differential-privacy model provides a 

robust and formal privacy guarantee, ensuring that the outcome of any analysis on the dataset is not 

significantly influenced by the presence or absence of a single record. This metric offers strong protection 

against a variety of potential attacks. However, selecting an appropriate 𝜀 value is critical and involves 

trade-offs between privacy and utility. A smaller 𝜀 enhances privacy but may substantially affect the 

accuracy of the analysis. 

  

7.3 Privacy-Level Metrics of the Data Mining Phase 

 

As a common results privacy metric, the HF metric provides a direct measurement of the privacy-utility 

trade-off in pattern recognition data mining techniques [35]. Its strength lies in quantifying the proportion 

of hidden sensitive patterns. However, the HF metric exclusively addresses this aspect and does not 

directly quantify the loss of non-sensitive information during the privacy-preserving process. In addition, 

a low HF value indicates a higher level of privacy protection, suggesting that a significant proportion of 

sensitive rules are effectively concealed within the anonymized dataset. Conversely, a high HF value 

implies that the PPDM technique may struggle to hide sensitive patterns, potentially exposing the data to 

privacy breaches. Therefore, an ideal PPDM technique should aim for a low HF value to enhance the 

protection of sensitive patterns. However, it is crucial to achieve a balance, as an overly aggressive 

approach to concealing sensitive information may inadvertently suppress valuable non-sensitive patterns, 

thereby reducing the data's overall utility for analysis. Consideration of the potential trade-off with data 

utility is essential, as excessively hiding patterns could render the data less useful for analytical purposes. 

Furthermore, this metric is particularly relevant for rule-based data mining techniques, such as association 

rule mining, where the objective is to discover relationships between variables. Table 1 summarizes a 

comparison between various privacy-level metrics. 

 

In summary, data privacy metrics, such as confidence level and average conditional entropy, provide 

simplicity but may not fully capture the complexity of privacy risks in modern datasets. In contrast, 

semantic privacy metrics, including adversarial knowledge gain and adversarial accuracy gain, offer more 

precise assessments of privacy risks, although they can be computationally intensive or limited in scope. 

However, utilizing both metrics in conjunction within their relevant context can provide a more balanced 

and insightful understanding of the privacy implications associated with various anonymization 

techniques. On the other hand, anonymization model metrics such as 𝑘-anonymity, 𝑙-diversity, and 𝑡-

closeness deliver increasingly sophisticated protection against specific types of attacks; however, they 

may be computationally expensive and still possess privacy vulnerabilities. Additionally, metrics like 𝜀-

differential privacy offer strong theoretical guarantees but present challenges in practical implementation 

and parameter tuning. 

 

The analysis of these privacy metrics indicates that no single metric is universally superior for all PPDM 

applications or comprehensively captures all aspects of privacy preservation. Each metric has its own 

strengths and limitations, making it essential for researchers and practitioners to carefully evaluate the 

specific requirements and constraints of their data mining tasks when selecting appropriate privacy 

metrics. Hence, it is essential to consider privacy-level metrics when evaluating the effectiveness of a 

PPDM technique. By quantifying the potential for information leakage through both the transformed data 

and data mining outputs, privacy-level metrics provide valuable insights for developing and deploying 

PPDM solutions that balance the extraction of meaningful knowledge with the protection of sensitive 

information. Furthermore, understanding the limitations of each metric is crucial for selecting the 
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appropriate PPDM method, interpreting the results, and making informed decisions regarding the trade-

off between privacy and utility.  

 

Table 1 .A comparison between various privacy-level metrics. 
 

Metric Key Characteristics Strengths Limitations 

Confidence level  Quantifies uncertainty in 

estimating original values 

from randomized data 

 Simple and straightforward 

 Easy to interpret. 

 Ignores the original data 

distribution. 

 Can lead to inaccurate privacy 

assessments. 

Average 

conditional 

entropy 

 Incorporates original data 

distribution into privacy 

calculation. 

 More nuanced assessment than 

Confidence level. 

 Considers data distribution 

 Computationally complex. 

 Requires knowledge of joint 

density function. 

Variance  Measures estimation 

accuracy in multiplicative 

noise randomization. 

 Simple measure for specific 

technique 

 Limited to multiplicative noise 

randomization. 

 Not applicable to other 

techniques. 

𝑘-anonymity  Ensure each record is 

indistinguishable from at 

least 𝑘 − 1 others. 

 Introduces group-based 

anonymization concept. 

 Easy to implement. 

 Several implementation 

algorithms available 

 Susceptible to privacy disclosure 

attacks. 

 Doesn’t account for multiple 

records per individual. 

𝑙-diversity  Requires 𝑙 well-

represented values for 

sensitive attributes in each 

group. 

 Addresses the limitations of 𝑘-

anonymity model. 

 Determining ‘well-represented’ 

values can be subjective. 

 Vulnerable to skewness attacks. 

𝑡-closeness  Ensures distribution of 

sensitive attributes in each 

group is close to original 

distribution. 

 Addresses skewness attack 

limitation of 𝑙-diversity. 

 Choosing appropriate 𝑡 involves 

privacy-utility trade-off. 

 May require excessive data 

generalizations. 

𝜀-differential 

privacy 
 Ensures analysis outcomes 

are not significantly 

affected by single record 

presence/absence. 

 Provides strong, formal privacy 

guarantees. 

 Robust against various attacks. 

 Setting appropriate 𝜀 involves 

privacy-utility trade-off. 

 Can significantly impact 

analysis accuracy. 

Adversarial 

knowledge gain 
 Quantifies average 

information gain about 

sensitive attributes. 

 Captures average information 

gain. 

 Based on semantic privacy 

concept. 

 Computationally expensive for 

large datasets. 

 Sensitive to data distribution. 

Adversarial 

accuracy gain 
 Measures improvement in 

adversary’s prediction 

ability. 

 Intuitive interpretation. 

 Computationally efficient 

 May underestimate information 

leakage. 

 Limited to specific attack 

scenario. 

Hidden failure  Measures privacy-utility 

trade-off in pattern 

recognition techniques. 

 Direct measure of hidden 

sensitive patterns. 

 Focuses only on hidden patterns. 

 Doesn’t quantify loss of non-

sensitive information. 

 

8. Challenges and Considerations in Measuring Privacy 
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Measuring privacy in the context of PPDM presents a significant challenge. The inherent subjectivity of 

privacy, along with the technical complexities of data mining and the evolving nature of privacy threats, 

necessitates a nuanced and multifaceted approach. This section examines the key challenges and 

considerations in measuring privacy within PPDM methods. 

 

8.1 The Lack of a Universal Privacy Definition 

 

A fundamental challenge arises from the absence of a universally accepted definition of privacy. What 

constitutes a privacy violation can vary significantly based on individual perceptions, cultural norms, 

legal frameworks, and the specific context of data usage. As a result, there is no "one size fits all" privacy 

metric capable of adequately capturing the diverse range of privacy concerns across all applications. This 

lack of standardization makes it difficult to objectively compare different PPDM techniques and assess 

their relative effectiveness in protecting privacy. 

 

8.2 Balancing Privacy and Utility: A Delicate Trade-off 

 

A recurring theme in the literature is the inherent tension between privacy and utility in data management. 

PPDM techniques frequently modify or transform original data to protect privacy while maintaining its 

utility for analysis. However, these objectives often conflict. Techniques that offer robust privacy 

protection frequently result in significantly reduced data utility. For instance, excessive noise added to a 

dataset can render it unsuitable for specific data mining tasks. Achieving the optimal balance between 

these competing objectives presents a persistent challenge, necessitating careful consideration of the 

specific requirements of the data mining application and acceptable levels of information loss. 

 

8.3 Contextual Factors: Data, Tasks, and Adversaries 

 

The selection of appropriate privacy metrics is significantly influenced by contextual factors. The nature 

and characteristics of the underlying data, whether numerical or categorical, determine the suitability of 

specific metrics. Additionally, the particular data mining task, such as association rule mining, 

classification, or clustering, introduces distinct privacy considerations. For instance, metrics that are 

relevant for evaluating privacy risks in association rule mining may not be suitable for assessing privacy 

breaches in a classification context. Hence, different data mining tasks present varying levels of privacy 

risk and necessitate distinct forms of privacy protection. Therefore, the selection of privacy metrics should 

correspond with the specific data mining task and its objectives. Furthermore, it is crucial to understand 

the capabilities and motivations of potential adversaries when selecting relevant metrics. Metrics should 

consider the attacker's background knowledge, access to auxiliary information, and possible attack 

strategies. By thoroughly evaluating these factors, data miners can select metrics that provide meaningful 

insights into the privacy risks and effectiveness of PPDM techniques for their specific applications. 

 

8.4 Utilizing Data Privacy and Results Privacy Metrics. 

 

It is essential to consider privacy-level metrics when evaluating various PPDM methods. Data privacy 

metrics assess the extent to which sensitive information can be inferred from the transformed data. These 

metrics may account for privacy-related factors, such as the amount of noise added to numerical data, or 

the level of generalization applied to categorical data. On the other hand, the results privacy metrics focus 

on the potential for privacy breaches that may arise from the outputs of data mining algorithms applied 

to transformed data. Therefore, privacy-level metrics provide valuable insights for the development and 
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deployment of PPDM solutions that balance the extraction of meaningful knowledge with the protection 

of sensitive information. 

 

8.5 The Quest for Standardized and Interpretable Metrics. 

 

The absence of standardized privacy metrics presents a considerable challenge in comparing various 

PPDM techniques and assessing their effectiveness. Although numerous metrics have been proposed, 

there is currently no consensus on the most suitable metrics for specific scenarios, complicating the 

objective evaluation and comparison of different PPDM approaches. Thus, future research should 

prioritize the development of standardized and widely accepted metrics that provide meaningful insights 

into the privacy risks associated with different PPDM techniques. Moreover, these metrics should be 

easily interpreted, enabling data practitioners to understand the practical implications of different privacy-

utility trade-offs. 

 

8.6 Measuring Hiding Failure: Addressing a Key Challenge 

 

Accurately measuring hiding failure of PPDM techniques is crucial for evaluating their effectiveness in 

protecting sensitive information. As previously clarified, hiding failure refers to the degree to which 

sensitive patterns remain detectable after the data has been sanitized. However, quantifying hiding failure 

poses challenges, as it necessitates the identification of all sensitive patterns within a dataset, a task that 

can be both computationally intensive and context dependent. Furthermore, the effectiveness of a PPDM 

algorithm in preventing disclosure can vary based on the specific data mining techniques utilized by an 

adversary. Consequently, evaluating hiding failure requires consideration of a diverse range of potential 

attack strategies and data mining algorithms. The development of robust methodologies and standardized 

frameworks for assessing hiding failure against various attacks remains an active area of research. 

In summary, measuring privacy in PPDM presents a complex set of challenges. The lack of a universal 

definition of privacy, the inherent trade-off between privacy and utility, and the necessity to consider 

various contextual factors all contribute to this complexity. Addressing these challenges requires moving 

beyond simplistic metrics and adopting a multifaceted approach that encompasses both data and results 

privacy, incorporates adversary models, and acknowledges the dynamic nature of privacy threats. 

Moreover, a deeper understanding of privacy-level metrics and their limitations is essential for guiding 

the development and application of more effective and trustworthy PPDM techniques that ultimately 

contribute to the advancement of responsible data mining practices. Consequently, future research should 

prioritize the development of standardized, interpretable, and context-aware privacy metrics that can 

effectively quantify and mitigate evolving privacy risks in PPDM. 

 

9. Conclusion 

 

Privacy-Preserving Data Mining (PPDM) techniques are crucial for extracting valuable insights from 

sensitive data while ensuring the protection of individuals' privacy. Evaluating the effectiveness of these 

techniques necessitates robust metrics that accurately quantify the level of privacy protection provided. 

Despite the increasing importance of PPDM methods, there remains a limited number of studies that 

address the metrics used to evaluate their effectiveness, particularly in relation to privacy preservation. 

This paper addressed this research gap by presenting an extensive evaluation study of privacy-level 

metrics for PPDM methods. In addition, a new classification for the privacy-level metrics examined based 

on the associated phase of PPDM in which they are most applicable is introduced. Besides, this paper 

presented a detailed analysis of various privacy-level metrics, exploring their strengths, limitations, and 
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applicability to various data mining scenarios. The study investigated data privacy metrics such as 

confidence level, average conditional entropy, and variance between original and perturbed data, which 

measure the uncertainty an attacker encounters when attempting to infer original data from the protected 

dataset. Furthermore, the introduced analysis included results privacy metrics like hidden failure, which 

assesses the risk of sensitive information disclosure from data mining outputs. Moreover, the paper 

offered a comprehensive discussion of various considerations and challenges associated with measuring 

privacy across different PPDM methods in the absence of a universally accepted definition. This 

discussion highlighted the importance of several contextual factors in selecting appropriate privacy 

metrics. Ultimately, this work aims to assist researchers and practitioners in the appropriate selection and 

interpretation of these metrics while also contributing to the development and deployment of robust 

PPDM techniques that balance the extraction of valuable insights from data with the maintenance of 

individuals' privacy. 
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