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Abstract: The exponential growth in internet data usage has created a pressing demand for highly efficient 

Network Intrusion Detection Systems (NIDS) capable of scaling with ever-increasing bandwidths to 

safeguard sensitive information. A cornerstone of NIDS, packet inspection, hinges on the ability to rapidly 

identify and analyze patterns within incoming data streams. The more diverse and extensive the pattern 

database, the more robust and effective the NIDS becomes. While the parallel failure-less version of the Aho-

Corasick (AC) algorithm provides maximum parallelism, it faces significant memory constraints due to the 

large transition tables generated when dealing with a vast number of patterns. To mitigate this limitation 

and enhance the scalability of NIDS, we introduce a novel parallel failure-less compressed hashed variation 

of the Aho-Corasick algorithm. Our proposed approach leverages the power of compression and hashing 

techniques to significantly reduce memory consumption without compromising performance. Empirical 

evaluations demonstrate that our algorithm requires only a fraction (approximately the square root) of the 

memory footprint compared to the original parallel failure-less Aho-Corasick algorithm, making it a more 

practical and scalable solution for modern NIDS architectures. 
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1. Introduction and Motivation 

 

The rapid escalation in internet usage and the involvement of the modern IoT technologies [1] has led to a 

significant increase in cyber threats and attacks [2]. Especially the rapid increase of usage of smart phones 

which lead to increased number of attacks [3]. Which some mobile app developer develops obfuscated 

applications  [4] to protect against cyber-attacks as the attackers are now using a modern technique like 

moving target defense to deceive systems [5]. This increase in cyber threats poses severe risks to global 

economies [6], with substantial financial losses and disruptions to critical infrastructure becoming 

increasingly common. As businesses and governments grow more reliant on digital systems, the potential for 

devastating cyber-attacks has surged, driving a heightened demand for monitoring network traffic and 

identifying potential security breaches. Some systems even employ machine learning techniques to monitor 

the network for any potential threats.  

Consequently, investments in cybersecurity systems have been intensified [7], with Network Intrusion 

Detection Systems (NIDS) emerging as critical components in modern cybersecurity. NIDS serve as the 

frontline defense in identifying and mitigating malicious activities within a network, relying heavily on 

signature-based detection [8], a technique that identifies known patterns of malicious activities. However, 

the packet inspection process, a key element of signature-based NIDS, is resource-intensive, particularly as 

the volume and variety of cyber threats expand, necessitating the ability to scale and process large datasets 

in real-time.  

To address this challenge, parallel NIDS implementations utilizing Graphics Processing Unit (GPU) 

architecture have emerged as a powerful solution, leveraging GPUs' massively parallel processing 

capabilities to accelerate pattern matching processes and enhance threat detection and response. 

Despite these advantages, modern GPU architectures are often constrained by memory bandwidth and 

capacity, limiting the performance of algorithms as pattern sets grow in size and complexity. This limitation 

is especially evident in the traditional parallel failure-less Aho-Corasick (AC) algorithm [9], which, despite 

maximizing parallelism, generates large transition tables that quickly consume available memory.  

To overcome these challenges, this research proposes a novel approach: a parallel failure-less compressed 

hashed variation of the Aho-Corasick algorithm. By employing advanced compression and hashing 

techniques, this method reduces the memory footprint while maintaining high levels of parallelism, 

representing a significant advancement in the development of scalable and efficient NIDS, capable of 

protecting against the ever-growing threat of cyber-attacks in an increasingly connected world. 

Our proposed variation of the Aho-Corasick algorithm is designed for optimal performance on distributed 

systems, ensuring work efficiency and overcoming memory limitations. This allows it to accommodate a 

larger number of patterns, making it more robust. In contrast, the original parallel Aho-Corasick algorithm 

struggles with work inefficiency due to significant overlap in tasks performed by different threads.  

 

2. Related work 

 

The problem addressed by related algorithms is formally known as "exact string matching," where the goal 

is to find all occurrences of a given pattern P (of length m) within a text T (of length n). Several algorithms 

have been developed to efficiently solve this problem, each offering distinct advantages and suited for 

specific use cases. However, only a few algorithms can be extended to support multiple patterns, and even 
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fewer can run in parallel while achieving significant speedup. each of these algorithms has its own 

complexities and challenges e.g. the Boyer-Moore, Aho-Corasick, and Rabin-Karp algorithms. 

 

2.1.  Boyer-Moore 

 

To enable the Boyer-Moore algorithm to support multiple pattern searches, it is essential to preprocess each 

pattern by constructing its "bad character heuristic array." This preprocessing allows the algorithm to skip 

unnecessary character comparisons, resulting in linear time complexity. While the parallel version of Boyer-

Moore scales well [10], its scalability diminishes when patterns frequently occur in the text, as no character 

comparisons can be skipped. This can lead to a worst-case running time of O(m×n) when patterns are found 

throughout the input text. 

 

2.2.  Rabin-Karp 

 

Rabin-Karp is one of the most effective algorithms for parallel execution and supports multiple pattern 

matching through various parallel variations [11]. Its performance improves significantly when using a 

collision-free hashing function, which eliminates the need for character-by-character comparisons [12]. 

However, a key limitation of all Rabin-Karp variations is the requirement that all patterns must be of the 

same length, which can be a significant drawback for some rule-based Network Intrusion Detection Systems 

(NIDS). 

 

2.3.  Aho-Corasick 

 

Unlike Boyer-Moore and Rabin-Karp, Aho-Corasick inherently supports multiple patterns matching with 

patterns of different lengths. However, running Aho-Corasick in parallel on a GPU presents challenges due 

to the memory limitations of GPU architecture. The number of patterns it can support is constrained by the 

available GPU memory, and performance suffers significantly if this capacity is exceeded [13]. Some 

variations of the parallel Aho-Corasick algorithm remove the failure links [14], reducing memory usage and 

allowing more patterns to fit. However, these variations struggle to maintain efficient performance as the 

number of available threads increases. 

 

3. Methodology 

 

The proposed variation of the Compressed Hashed Parallel Failure-less Aho-Corasick algorithm utilizes 

collision-less hashing for pattern storage. Instead of storing each pattern in memory, we save only their hash 

values. This approach significantly reduces memory requirements, replacing a large tree with a vast number 

of nodes with a more compact structure. Each node in the tree stores only two numbers: the first is the hash 

value of the string represented by the graph edge, and the second is the length of that string. The pattern 

matching process is then performed using a regular serial graph traversal algorithm, such as BFS or DFS. 

During traversal, pruning techniques are applied, ensuring that at most N nodes are accessed during the 

matching process. On average, a couple of nodes are accessed in the case of a mismatch, and around log2(n) 

nodes are accessed in the case of a match, where n is the number of patterns. The tree construction process 
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consists of three main steps: Trie building, Trie compression, and Trie collision-less hashing. Finally, parallel 

pattern matching is executed using a graph traversal algorithm. 

 

3.1.  Trie Building 

 

In the Trie building step, words are inserted into a tree structure by adding nodes for each character, starting 

from a shared root. As words are added, shared prefixes follow common paths, reducing redundancy. Each 

node represents a character, with the end of a word marked at its final character's node. This structure 

organizes words efficiently, enabling quick retrieval and minimizing space usage for shared prefixes. For 

example, consider the patterns {"banana", "nabd", "bcdef", "bcfeg", "aaaaaa", "aabaa"}. Figure 1 shows the 

final state of the trie after all these patterns have been inserted. Notice that we can have a worst case of N * 

M  nodes at worst case where N is the number of patterns and M be the length of each pattern. Usually, each 

node contains A pointers where A is the number of characters in the alphabet. 

 

 
Figure 1 Regular Trie after Building 

 

3.2.  Trie Compression 

 

In the Trie compression step, we reduce the size of a trie by merging nodes that have only one child. This 

process collapses linear chains of such nodes into a single node. The resulting structure, known as a "compact 

trie" or "radix tree," represents entire sequences of single-child nodes with just one node. This compression 

makes the trie more space-efficient while still allowing fast searches and retrieval of words or patterns. By 



ENHANCED AHO-CORASICK ALGORITHM FOR NETWORK INTRUSION DETECTION SYSTEMS  

              87 

 

  

reducing the overall memory usage, this technique also enhances the performance of certain operations, 

especially in tries that contain long, unique sequences. Considering the Trie built in Fig.1 we present the 

compressed version of the same trie after compression in Figure 2. 

 

 
Figure 2 Built Trie after Compression 

 

3.3.  Trie Hashing 

 
In the Trie hashing step, we replace long strings with two numbers and one Boolean flag the two numbers 

represents the hash value of the string and the length of the string whereas the Boolean flag determines 

whether or not the current node is a terminal node ie end of a string. We use a strong hashing function to 

minimize the risk of collisions, so we don't need to worry about them. This approach significantly reduces 

the size of each node. Considering the compressed trie built in Figure 2. We present the same compressed trie after being hashed in  

Figure 3. Note that string values in the figure are only for illustration purposes. 

 

 
 

Figure 3 Built Trie after Compression and Hashing 

 

3.4.  Parallel Pattern Matching 
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In the parallel pattern matching step, we can begin traversing the graph from each index of the input text. For 

example, if we start at position i in the input text, we match against the same set of input patterns: {"banana", 

"nabd", "bcdef", "bcfeg", "aaaaaa", "aabaa"}. We use the compressed, hashed trie that we built earlier (as 

shown in Figure 3) to find the hashes for the substrings starting at position i and ending at positions i+1, i+3 

and i+4. If any of those hashes matches, we continue traversing the graph recursively. In Table 1 Pseudo code 

for Parallel Trie Traversal, we present the pseudo code of the Depth First Search (DFS) traversal algorithm for 

the compressed hashed trie. The parallel DFS is preferred for the parallel execution rather than the BFS as 

the BFS algorithm introduces extra complexity for the shared queue between threads which can lead to lots 

of read/write conflicts [15]. 

 
Table 1 Pseudo code for Parallel Trie Traversal 

 

Pseudo code 

1: Function DFS(textStartIdx, textCurrentIdx, curNode): 

2:  // Check if the current node is a terminal node (end of a pattern) 

3:  If curNode.terminalNode is true: 

4:   proposedPatternIdx = curNode.patternIdx 

5:   proposedPatternHash = patternHashes[proposedPatternIdx] 

6:    

7:   // Calculate the hash offset 

8:   proposedPatternHashOffseted = (proposedPatternHash * lookupTable[textStartIdx]) % HASHVAL 

9:    

10:   // Check if the proposed pattern's hash matches the text's hash in the interval 

11:   If proposedPatternHashOffseted == intervalTextHash(textStartIdx, textCurrentIdx - 1): 

12:    // If match found, add pattern index to matches 

13:    Add proposedPatternIdx to matches 

14:   

15:  // Traverse through all children of the current node 

16:  For each child in curNode.children: 

17:   edgeHash = child.edgeHash 

18:   stringSize = child.stringSize 

19:    

20:   // Calculate the target end index for the current substring 

21:   targetEndIdx = textCurrentIdx + stringSize - 1 

22:    

23:   // Get the hash of the corresponding substring in the text 

24:   correspondingTextHash = intervalTextHash(textCurrentIdx, targetEndIdx) 

25:    

26:   // Calculate the offset hash for the edge 

27:   edgeHashOffseted = (edgeHash * lookupTable[textCurrentIdx]) % HASHVAL 

28:    

29:   // If the corresponding text hash matches the edge's hash, continue DFS 

30:   If correspondingTextHash == edgeHashOffseted: 

31:    Call DFS(textStartIdx, targetEndIdx + 1, child.node) 

 

3.4. Parallel Pattern Matching 
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• The steps of Trie Building, Trie Compression, and Trie Hashing can all be preprocessed before the 

input text is passed to the system. As a result, these steps do not impact the runtime during the actual 

text processing. 

• Given that each non-leaf node has at least two children and there are at most N leaf nodes, the trie 

will have at most 2N nodes. Since it is a tree structure, there will be 2N - 1 edges, with each edge 

storing only two numbers and a flag. 

• In the parallel matching step, we can execute the DFS function simultaneously at every position in 

the input text, as there are no data dependencies between these operations. 

• For each character in the input text, on average, only a few nodes will be accessed in the case of a 

mismatch. In the case of a match, on average, log₂(N) nodes will be accessed, making the process 

highly efficient, meaning that overall time complexity would be 𝑂 (
𝑇𝑒𝑥𝑡.length ∗log2(N) 

𝜏
) where 𝜏 is the 

number of available threads. 

 

4. Results 

 

In our experiments, we considered various numbers of input patterns, each with different lengths. These 

patterns were matched against an input text of a constant 106 characters long (≈ 1Mbytes). 

The input string and the patterns are randomly generated over the alphabet size 𝐴𝑙𝑝ℎ𝑎𝑏𝑒𝑡 = 26 which is all 

English lower-case letters. During our experimentation, we ran both the parallel failure-less Aho-Corasick 

algorithm and the proposed compressed hashed failure-less Aho-Corasick algorithm. For each experiment, 

we measured the average running time per GPU thread for each character in the input text (in nanoseconds) 

and the number of nodes that needed to be copied to the GPU memory. Finally, we created two three-

dimensional graphs to illustrate how the time and space complexity of both algorithms behave across all 

possible combinations of average pattern length and number of patterns. 

 

4.1.  Execution Time 

 

We illustrate in Figure 4 how the execution times of both algorithms are affected. Our proposed algorithm 

maintains its performance, even as the number of patterns and the average pattern length increase, 

consistently running about five times slower than the regular parallel failure-less Aho-Corasick algorithm. 

This constant slowdown is acceptable because it is caused by the time required to hash the input text and 

match hashes, unlike the original algorithm, which relies on simple character-to-character matching. Hashing 

involves more complex operations, such as power and modulo, which contribute to the increased execution 

time. 

 

4.2. Number of Nodes (Memory Usage) 

 

Memory usages graph shown in Figure 5  illustrates the number of nodes each algorithm requires to be 

copied to the GPU memory for the pattern-matching process to start. Our proposed algorithm significantly 

reduces the number of nodes that need to be stored in GPU memory. The experimental results show that the 

memory space required by our proposed algorithm has a linear relationship with the overall size of the 

input patterns. In contrast, the parallel failureless Aho-Corasick algorithm exhibits a quadratic increase in 



90 Anas Abbas et al. 

the number of nodes needed, which depends on both the size of the input patterns and the number of 

alphabetic characters used in the system. 

In the worst-case scenario, where there are 512 patterns with an average length of 512 characters each, the 

original Aho-Corasick algorithm requires approximately 250,000 nodes, while our proposed algorithm needs 

only around 500 nodes. Additionally, depending on the implementation details, the nodes in the compressed 

hashed parallel failureless Aho-Corasick algorithm often take up less memory than the original failureless 

Aho-Corasick nodes. This means that our approach not only significantly reduces the number of nodes but 

also decreases the memory required for each node. 

 

 
Figure 4 Execution Time Comparison 

 

 
Figure 5 Memory Usages Comparison 
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4.2. Hardware Specs 

 

Execution times were collected using the NVIDIA Nsight profiling system where an NVIDIA A100-PCI 

graphics card and an Intel(r) Xeon(r) silver 4314 CPU @ 2.40ghz were used to execute the two 

implementations. 

 

5. Conclusion 

 

Our proposed algorithm has demonstrated a significant reduction in memory usage, which is crucial for 

modern GPU architectures. Our experiments show that the compressed hashed version of the parallel failure-

less Aho-Corasick algorithm uses only the square root of the memory required by the original version. This 

reduction in memory usage comes at the cost of a 4-5 times slower execution time due to the overhead of 

calculating hashes for the input text, which involves complex operations like exponentiation, modulo, and 

multiplication. Despite this trade-off, the proposed algorithm is highly beneficial for Network Intrusion 

Detection Systems (NIDS) with large pattern databases that are constrained by GPU memory limitations, as 

it effectively alleviates those memory constraints. 
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