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Abstract: Internet of Things (IoT) networks are integral to modern life due to their pervasive connectivity 

and automation capabilities. Intrusion Detection Systems (IDS) are crucial in IoT ecosystems to 

countermeasure attacks that can compromise devices and disrupt essential services. Their role is vital in 

maintaining the integrity, confidentiality, and availability of data within these networks. The effectiveness 

of these security systems is fundamentally dependent on the robustness of learning algorithms and the 

quality of the datasets utilized. Class imbalance is a common challenge in real-world datasets, where 

certain classes are represented by significantly fewer instances compared to others. This paper studies 

the impact of balancing the BoT-IoT dataset on the performance of Machine Learning (ML) based IDSs 

using three algorithms: K-Nearest Neighbors (KNN), Gradient Boosting (GB), and Support Vector 

Machine (SVM). We apply two resampling techniques: random upsampling and Synthetic Minority Over-

sampling Technique (SMOTE). The results show that dataset balancing improves F1-scores across all 

the algorithms. Minority classes F1-scores increase in KNN, GB, and SVM from 0.77 to 1, 0 to 0.989, 

and 0 to 0.999; respectively. Our findings prove that balanced datasets lead to more dependable and 

robust IDSs that are capable of handling real-world data with varied class distributions. 
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The Internet of Things (IoT) is a vast network of interconnected exchange data and information in both 

wired and wireless modes to accomplish certain tasks or run specific applications. IoT devices are used 

in various domains such as smart cities, education, fleet management, and industrial plants [1, 2]. They 

are even used as personal cardiac monitoring wristlet [3]. Nevertheless, IoT gadgets are low-powered 

vulnerable devices that attract intruders to exploit them to gain access to critical data or services in the 

system. Therefore, in our contemporary connected world, Intrusion Detection Systems (IDS) are essential 

aspects of securing IoT networks [4]. An IDS is a combination of software and hardware components that 

aim to detect any malicious behavior within the network. Over the past years, researchers have been 

exploring the power of Machine Learning (ML) algorithms to provide an efficient IoT-tailored IDS. In 

contrast to conventional firewalls and detection methods, ML is capable of handling large data [5]. The 

intelligence of these techniques and their ability to learn are used to monitor the system and recognize 

any abnormal behavior. 

Network security researchers have created intrusion datasets to aid the IDSs in identifying diverse attacks. 

In the context of these publicly available datasets, researchers build methodologies and tools for building 

an efficient security system. One of the prevalent issues recognized in numerous scholarly articles is that 

specific attack categories occur infrequently, whereas other types of attacks constitute the largest part of 

the dataset. This imbalance downgrades the performance of the system, as the model succeeds at 

identifying the majority classes but struggles to identify minority classes [6, 7]. Dataset balancing 

techniques involve methods such as oversampling, where minority class instances are augmented, and 

undersampling, where majority class instances are reduced. Our study aims to provide valuable insights 

into the significance of dataset balance and its implications for intrusion detection efficacy using 

prominent ML algorithms. We train and evaluate the models using BoT-IoT dataset [8] which encloses 

four attacks. These attacks are Denial of Service (DoS), Distributed Denial of Service (DDoS), 

Reconnaissance, and theft attacks. The key contributions of this research are: 

 

• Addressing the problem of imbalanced datasets using data resampling techniques. We apply 

Synthetic Minority Oversampling Technique (SMOTE) and random under-sampling technique to 

the dataset to elevate the performance of the models. 

• Conducting an empirical analysis and comparing the performance of machine learning models on 

balanced and unbalanced datasets. We provide a thorough view of the impact of dataset balance on 

classification performance by systematically evaluating three different algorithms with different 

hyperparameters. The ML algorithms are K-Nearest Neighbors (KNN), Gradient Boosting (GB), 

and Support Vector Machines (SVM). 

• Assessing the performance of ML classification models using different evaluation metrics, 

including accuracy, precision, recall, and F1-score. This allows for a better understanding of each 

model’s performance in the presence of class imbalance. 

 

The rest of the paper is organized as follows. section II gives insights into the background and the related 

work in this domain. In section III, we illustrate the proposed methodology along with the data 

preprocessing phases. Section IV demonstrates the experimental work and findings. Lastly, Section V 

discloses our study's conclusion and future directions. 

 

2. Background and Related Work 

 

2.1. Intrusion Detection Systems 
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In the realm of IoT, and with the continuous growth of the embedding of vulnerable IoT devices, we 

cannot overstate the importance of creating an efficient IDS. The primary function of IDS is to detect 

abnormal activities and unauthorized entries into IoT networks or systems. IoT environments are at risk 

of a vast array of attacks, and without enough security measures, the system and devices are left open to 

potential threats. By employing IDSs, network traffic can be analyzed, potential threats can be identified, 

and administrators can be promptly notified of any dubious activities. As illustrated in Figure 1, the 

general framework of an IDS comprises numerous stages. The primary processes are data collecting, data 

pre-processing, intrusion detection, and alarm activation. 

IDSs are classified based upon information source, detection method, placement strategy, and response 

mechanism. Based on the information source, IDSs are categorized as Host-based (HIDS), Network-

based (NIDS), or Hybrid. HIDS monitor activities on a single host, analyzing operating system data but 

consuming host resources, whereas NIDS observe network traffic across the entire network, and Hybrid 

IDSs combine both for improved accuracy. Based on detection methods, IDSs use Signature (Misuse) 

Detection, which relies on known attack signatures but cannot detect new threats, or Anomaly Detection, 

identifies abnormal behaviors but produces false positives [9]. Specification-based IDSs define normal 

behavior to detect anomalies, while Hybrid systems merge multiple techniques for greater robustness. 

Placement strategies include Centralized, where a single node monitors the network, Distributed, where 

devices monitor themselves, and Hybrid, which combines both for increased reliability. Finally, based on 

response mechanisms, IDSs can be active, automatically responding to threats in real-time, or passive, 

alerting administrators to respond manually. 

 

 
 

Figure 1: The general framework of an IDS 

 

2.2. Intrusion Detection Datasets 

 

To evaluate intrusion detection systems, it is crucial to use dependable datasets that enclose both 

legitimate and malicious data. Furthermore, the comparison of diverse proposed studies demands having 

benchmark datasets. Below is a brief description of some of the benchmark intrusion detection datasets. 

 

• DARPA98 [10]: The researchers in the Defense Advanced Research Project Agency (DARPA) 

evaluation program created this dataset in 1998. It originated from audit logs and network traffic, 

and it is composed of two subsets. The first one comprises seven weeks of network-based attacks 

with regular data and is used for training the models. The second one comprises two weeks of 
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attacks mixed in with regular data and is used for testing the model. However, this is an old dataset 

that does not fully reflect the variety and severity of contemporary cyber threats. 

• KDD Cup 99 / KDD99 [11]: This dataset was utilized in the Knowledge Discovery and Data 

Mining Tools (KDD) Competition. It is an improved version of the previously released DARPA 

dataset, where the network traces were converted into 41 connection characteristics based on 

Transmission Control Protocol (TCP) connections. In the creation of this dataset, Lincoln Labs 

researchers simulated a typical US Air Force Local Area Network (LAN) using a variety of 

integrated intrusion attack techniques. Yet, the dataset does not fully represent the complexity of 

the existing cyber-attacks, and it is extremely imbalanced. 

• NSL-KDD [12]: The NSL-KDD dataset is a widely used benchmark dataset for intrusion detection 

research. It is an improved version of the original KDD Cup 99 dataset, addressing some of its 

limitations such as redundancy and irrelevant features. With its balanced distribution of attack types 

and reduced feature space, NSL-KDD facilitates more accurate and robust evaluations of intrusion 

detection systems. It has 125,973 records for training and 22,544 records for testing. It encloses 22 

intrusion attacks and 41 attributes. The drawback of this dataset is that it is synthetic and does not 

fully represent the complexities and diversities of real-world network traffic. 

• Kyoto 2006+ [13]: This dataset was collected over three years, from 2006 to 2009 using real 

network data collected through honeypots and servers of Kyoto University. It includes 14 

conventional features originating from the KDD99 dataset, as well as 10 additional extracted 

features. 

• UNSW-NB15 [14]: The primary purpose of creating this dataset was to combine traditional normal 

activities with simulated contemporary harmful behaviors. It includes various attack scenarios. 

Nevertheless, this dataset does not cover some types of intrusion detection, such as host-based or 

application-layer intrusion detection. In addition to that, there is insufficient variation in the normal 

network traffic which could affect the classification accuracy of the IDS. 

• CICIDS 2017 [15]: This dataset contains a broad range of the most prevalent attacks derived from 

real network traffic features. It contains both benign traffic and attack instances in their PCAP files. 

The dataset was created at the Canadian Institute of Cyber Security and the authors used the 

CICFlowMeter to analyze packet captures and export the dataset's main features. 

• Bot-IoT: The BoT-IoT dataset consists of real-world IoT network traffic captured from a smart 

campus environment at UNSW Canberra cyber center. It includes both benign and malicious 

activities. It encloses more than 72 million records with attacks such as DoS, DDoS, 

Reconnaissance, and theft attacks. This dataset provides a realistic testbed and organizes collected 

traffic depending on attack categories. 

 

In our study, we use the BoT-IoT dataset for training and testing our models. Unlike other intrusion 

detection datasets, the BoT-IoT dataset offers a unique advantage of capturing real-world IoT network 

traffic from a smart environment. This provides a highly realistic and diverse set of scenarios for 

evaluation. Additionally, the dataset includes both benign and malicious activities, allowing for the 

development and assessment of intrusion detection systems under various threat scenarios. Nevertheless, 

Intrusion detection state-of-the-art benchmark datasets include class imbalances, and this problem should 

be addressed in the data preprocessing phase. Table 1 summarizes the previously mentioned datasets. 
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Table 1 Summary of Intrusion Detection Datasets 
 

Dataset Year Developer 
No. of 

features 

No. of 

records 
Attacks Limitation 

DARPA98 1998 
MIT Lincoln 

Laboratory 
41 409020 

DoS, R2L, U2R, and 

Probing 

Outdated attacks 

Not real traffic 

Lack of false positives 

KDD99 1999 
University of 

California 
41 4,898,431 

DoS, R2L, U2R, and 

Probing 

Outdated attacks. 

Extremely unbalanced. 

NSL-KDD 2009 
University of 

California 
41 148,517 

DoS, R2L, U2R, and 

Probing 

Imbalanced 

Limited attack types. 

Kyoto 2006+ 2006 Kyoto University 24 93,076,270 Normal and Attack sessions 
Unrealistic normal traffic. 

Lack of attack details. 

UNSW-NB15 2015 
University of New 

South Wales 
49 2,540,044 

Analysis, Backdoor, DoS, 

Exploits, Fuzzers, Generic, 

Shellcode, Worms, and 

Reconnaissance 

Imbalanced 

Lack of some intrusions 

Unrealistic IoT nature 

Insufficient normal traffic 

CICIDS2017 2017 
Canadian Institute 

of Cyber Security 
79 2,830,743 

Botnet, Brute Force, Web, 

DDoS, DoS, Heartbleed, 

Infiltration, and Port Scan. 

Imbalanced 

Includes synthetic traffic. 

Feature Redundancy 

Limited Documentation 

Bot-IoT 2018 
University of New 

South Wales 
43 73,370,443 

DDoS, DoS, Theft, and 

Reconnaissance 

Highly Imbalanced 

Large in size 

Lack of Longitudinal data 

 

2.3. Literature Review 

 

Machine learning models are being used increasingly to detect security risks and vulnerabilities in IoT 

environments. Machine learning has effectively performed in spam, fraud, and anomaly detection. 

Security researchers have proposed using ML models in IDSs as a viable option for designing anomaly-

based IDS, as evidenced by the accuracy and effectiveness of the proposed techniques. This subsection 

overviews previously proposed ML-based IDSs in IoT. 

 

Gao et al. [16] developed an IDS based on an ensemble adaptive voting technique. They applied four 

distinct algorithms: Decision Tree (DT), Random Forest (RF), KNN, and Deep Neural Networks. They 

verified their technique using an NSL-KDD-Test+ file. The DT’s accuracy is 84.2%, while the adaptive 

algorithm's accuracy is 85.2%. The authors stated that their ensemble adaptive model enhances detection 

accuracy. However, the model performed poorly with minor classes of the dataset. 

Chkirbene et al. [17] introduced a hybrid technique that incorporates two ML algorithms. They employed 

RF to identify the important features, then they used Classification and Regression Trees (CART) to 

categorize the various assault types. They tested their system using the UNSW-NB15 dataset. The 

accuracy for the UNSW-NB15 and KDD99 datasets were 95.73% and 97.03%, respectively. 

Ferrag et al. [18] introduced a Rules and Decision Tree-Based Intrusion Detection System (RDTIDS) for 

IoT Networks. They employed many techniques including REP Tree, JRip algorithm, and Forest PA. The 

system employed three classifiers, with the third taking into account the results of the previous two. The 

model achieved greater than 96% accuracy when evaluated against real traffic data sets CIC-IDS-2017 

and BoT-IoT. 
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Dina et al. [19] presented an intrusion detection system based on decision trees. They classified attacks 

as normal, dos, probe, r2l, or u2r. When evaluated on the KDDTest, their DT algorithm obtained an 

accuracy of 75.22%, compared to 73.26% for SVM and 62.73% for RF. 

Douiba et al. [20] used Gradient Boosting (GB) and Decision Tree (DT) algorithms to build a refined 

IDS. They tested and validated their models using NSL-KDD, IoT-23, BoT-IoT, and Edge-IIoT datasets. 

The model had good overall performance metrics. 

Xu et al. [21] created an automated method for detecting 22 IoT attacks using machine learning and an 

edge server. Their model aimed to classify network intrusions based on characteristics such as server 

count, error rate, and network protocol. They used the SMOTE technique to balance the KDDcup99 

dataset. Their experimental works showed that the proposed model outperformed prior models, with high 

classification accuracy. 

 

ML-based IDSs have been developed over the past years, with researchers focusing on improving 

detection accuracy. However, relying solely on accuracy as the evaluation metric can be misleading, as it 

fails to account for class imbalances, where some attack types are vastly outnumbered by normal 

instances. Therefore, checking per-class performance is crucial as it provides insights into the detection 

capabilities for each attack type, highlighting potential weaknesses or biases in the system. By analyzing 

per-class performance metrics such as precision, recall, and F1-score, we can better understand the 

system's ability to detect specific attacks accurately, enabling more effective threat mitigation strategies. 

 

3. Proposed Methodology 

 

This research examines the effect of data balancing on the classification of different ML algorithms. The 

general research framework is shown in Figure 2. 

 

 
 

Figure 2: The general framework of the proposed system 

 

3.1. Dataset Preprocessing 

 

We train and evaluate the implemented IDSs using the Bot-IoT benchmark dataset, which has 43 features, 

allowing comprehensive analysis and ensuring flexibility in feature reproducibility. The full feature set 

includes features that are significant in certain contexts or for specific types of analysis. Nevertheless, we 
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use the 10-Best subset. This subset holds ten features with the best correlation coefficient and joint 

entropy. Using the 10-Best subset eliminates the need for extensive feature engineering while preserving 

the main discriminative features essential for intrusion detection and saving resources during the models’ 

development. The authors additionally enclosed 5 independent flow identifiers and 3 dependent features. 

The flow identifiers are “saddr,” “sport,” “daddr,” “dport,” and “proto.” The 3 dependent features are 

“attack,” “category,” and “subcategory.” Moreover, “pkSeqID” is a numerical feature that serves as a row 

identifier. Table 2 shows the description and datatype of the 10-Best subset features. 

 
Table 2: The Description of the 10-Best BoT-IoT subset features 

 

Features Description Data Type 

pkSeqID Row identifier int64 

proto Textual representation of transaction protocols in network flow object 

saddr Source IP address object 

sport Source port number object 

dadrr Destination IP address object 

dport Destination IP address object 

seq Argus sequence number int64 

stddev Standard deviation of aggregated records float64 

N_IN_Conn_P_SrcIP Number of inbound connections per source IP int64 

min Minimum duration of aggregated records float64 

state_number Numerical representation of feature state int64 

mean Average duration of aggregated records float64 

N_IN_Conn_P_DstIP Number of inbound connections per destination IP int64 

drate Destination-to-source packets per second float64 

srate Source-to-destination packets per second float64 

max Maximum duration of aggregated records float64 

attack Numerical representation of instance nature (0= Normal, 1=attack) int64 

category Attack category object 

subcategory Attack subcategory object 

 

Dataset preprocessing is a necessary stage after its acquisition. The applied preprocessing steps are: 

• Data Cleaning: During the preliminary stages of data preprocessing, we remove all null, replicate, 

and infinite values from the dataset. 

• Feature reduction: We reduce the number of features by dropping the flow identifiers, as they 

convey localized insights that cannot be broadened, and might lead to skewed predictions. We drop 

the “pkSeqID” column as it is a numerical index that does not provide significant information. 

Furthermore, we drop the “subcategory” feature. The “attack” feature, which numerically 

represents the attack category, is dropped because this information is already conveyed in the 

“category” feature. 

• Data Encoding: We change the categorical features to numerical representations suitable for 

machine learning algorithms. In our study we consider five classes in the BoT-IoT dataset: DoS, 

DDoS, Normal, Reconnaissance, and Theft. Therefore, we encode a unique number for each of 

these five classes. 

• Data Normalization: We use the MinMax Scalar to bring all the features to a similar scale to 

prevent certain features from dominating others. This transformation preserves the shape of the 
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original distribution but within certain bounds; from 0 to 1. We apply the data normalization after 

splitting the dataset into training and testing subsets to avoid test-to-train leakage for a more robust 

IDS [22]. The new normalized feature value (Xnew), of a feature (X) is calculated as follows: 

𝑋𝑖 𝑛𝑒𝑤 = 
𝑋 - 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 - 𝑋𝑚𝑖𝑛
 (1) 

Where Xmin and Xmax are the minimum and maximum values of X, respectively. 

• Data Splitting: We split our dataset into 80% for training and 20% for testing. This process helps 

to evaluate the performance of models on unseen data, ensuring robustness and generalization. 

 

3.2. Dataset Balancing 

 

The BoT-IoT is highly imbalanced. To reach a balanced dataset, we apply two resampling techniques: 

• Random Down-sampling: This technique is used to address the dataset imbalance when the 

majority class significantly outnumbers the minority class. It randomly selects instances from the 

majority class and removes them from the dataset for a more balanced class distribution. 

• Synthetic Minority Oversampling Technique (SMOTE) [23]: SMOTE is an up-sampling 

technique that generates novel data points based on the k-nearest clustering-based algorithm. 

SMOTE holds greater advantage than random up-sampling, as it creates new points rather than 

simply duplicating already existing ones. It creates for each minority point xi, a new point x′i, that 

depends on the randomly selected xj from xi’s nearest (k) neighbors, and λ is a random value ranged 

in [0, 1]. The functionality of this up-sampling technique is defined in Eq. (2). 

x'i=x'i + (x'j – x'i) (2) 

 

3.3. Machine Learning Classification Techniques 

 

Machine learning is a branch of AI in which computers aim to enhance their performance through learning 

and experience gaining. It comprises the development of statistical algorithms to extract specific patterns 

and make decisions or predictions. ML techniques are primarily classified as unsupervised or supervised 

learning, with other classifications including semi-supervised and reinforced learning. In supervised 

approaches, the model is trained on labeled datasets, whereas unsupervised models take unlabeled input 

data and attempt to infer patterns and features on their own. This subsection gives a brief overview of the 

ML algorithms implemented in this study. 

• K-Nearest Neighbor (KNN): This is a fundamental ML algorithm that is used for classification 

and regression tasks. In KNN, the classification of a datapoint is determined by the majority class 

or average value of its nearest neighbors in the feature space. The number of neighbors considered 

in the classification is determined by the user-defined constant, “k.” Larger values of K smooth out 

noises but potentially cause overfitting, while smaller values of K can capture more details but 

might be more susceptible to noise. Despite being an adaptive algorithm that effectively manages 

newly acquired data, KNN performs badly when the class distribution is skewed.  

• Gradient Boosting: Gradient boosting is an ensemble learning strategy that creates its prediction 

model by integrating multiple weak learners. It applies boosting techniques to solve regression and 

classification problems. Typically, the weak learners in this algorithm are Decision Trees (DTs). 

In each iteration, a new decision tree is trained to forecast the residuals of the preceding model, and 

the overall prediction is updated based on the predictions from all trees. 



STUDYING THE IMPACT OF DATASET BALANCING ON MACHINE LEARNING-BASED INTRUSION 

DETECTION SYSTEMS FOR IOT         49 

• Support Vector Machine (SVM): SVM is a supervised method used for classification and 

regression. It translates data into higher dimensions and determines the maximum margin 

hyperplane that distinguishes between normal and abnormal cases. Various separation hyper-

planes are obtained via a Kernel, which can be linear, polynomial, hyperbolic tangent, or Gaussian 

Radial Basis Function. This algorithm is memory-efficient and can detect real-time attacks by 

analyzing attack patterns while training the data. However, SVM is impractical with large datasets, 

and it is sensitive to any data noise near the hyperplane. 

We intentionally selected these three algorithms because they represent diverse learning paradigms. The 

instance-based KNN, ensemble-based GB, and margin-based SVM provide perspectives on how dataset 

balancing impacts model performance. Moreover, these algorithms are widely adopted in different fields, 

making them reliable benchmarks. Their inclusion ensures that the study covers a broad spectrum of 

machine learning techniques, offering insights that are robust and generalizable across various IDS 

scenarios in IoT environments. 

 

4. Experimental Work and Discussion 

 

4.1. Environmental Setup and Hyperparameters 

 

We implement our models via the online Google Colaboratory (Colab), provided with Intel(R) Xeon 

vCPU @2.3 GHz, 2 cores, and 13 GB RAM. We use Python 3.1 and Keras 2.12 API running on 

Tensorflow 2.13 as the backend. Our selected models have main hyperparameters. “k” in KNN is the 

number of nearest neighbors used for classification, “C” in SVM is the regularization parameter that 

controls the trade-off between maximizing the margin and minimizing the classification error, and the 

number of estimators in GB refers to the number of trees used. We examine different values of these 

hyperparameters to assess their impact on model performance.  

 

4.2. Evaluation Metrics 

 

We measure the functionality and efficiency of a learning-based model through certain evaluation metrics. 

These metrics assist in comparing different models or algorithms and offer insight into how well the 

model is working. The classification predictions fall under four categories: True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN). TP and TN are when the predictions are 

correct, and they belong to the positive and negative classes, respectively. FP refers to an incorrect 

prediction of the positive class. While FN means that the model predicted a negative class which is an 

incorrect prediction. The combination of these measures results in our main evaluation metrics, which are 

accuracy, precision, recall, and F1-score. These metrics are calculated as follows: 

Accuracy = 
No. of  correct predictions

 Total predictions
= 

T P +TN

TP + TN + FP + FN
  (3) 

Precision =
No. of correct positive predictions

Total positive predictions
= 

TP

TP + FP
 (4) 

Recall = 
No.  of correct positive predictions

Total No.  of positive instances
= 

TP

TP + FN
  (5) 

F1-Score= 2 × 
Precision × Recall

Precision + Recall
 (6) 
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For the averaged performance metrics of each model, we study the macro average results, which is the 

arithmetic mean of the result across all classes. This approach is better in studying the effect of imbalanced 

datasets as it treats all classes equally, ensuring that the performance on minority classes is not 

overshadowed by the majority class. We also examine the confusion matrix because it provides detailed 

insights into the performance of our classification model and the types of errors it is making. 

 

4.3. Addressing the Data Imbalance 

 

As previously mentioned, the BoT-IoT dataset is extremely imbalanced, and we address this problem by 

under-sampling and oversampling techniques. For both techniques, we select the "Reconnaissance" class 

as our reference class for resampling because it represents the average class distribution in the dataset. 

This allows us to adjust the size of other classes in relation to this central class, either by upsampling 

majority classes or downsampling minority classes, to achieve a more balanced dataset. We randomly 

under-sample the “DoS” and “DDoS.” We up-sample the minority classes, “Normal” and “Theft” using 

SMOTE with k=2. The distribution percentage of the classes before and after the balancing techniques is 

shown in Figure 3. As seen in Figure (3-a), the BoT-IoT dataset is extremely imbalanced that the “Theft” 

and “Normal” classes cannot be seen in the pie chart distribution. 

 

 

 

Figure 3: The distribution percentage of the 10-Best BoT-IoT dataset before and after resampling. (a) Distribution before 

resampling, illustrating the original imbalanced data distribution. (b) Distribution after resampling, showing the balanced 

data distribution. 

 

4.4. Results and Discussions 

 

Despite the high accuracies in some experiments, these high results are misleading as they reflect the 

models’ abilities to classify the majority class correctly. Therefore, for legitimate evaluations, we must 

consider the models' precision, recall, and F1-score. The analysis and discussion of each model is 

presented in the following. 

 

1. K-Nearest Neighbors: To observe how model complexity affects performance, we implement 

the KNN model using 5, 9, and 13 neighbors, larger values smoothing out noise and smaller values 

capturing finer details. The classification results of the KNN models are presented in Table 4. 

 

(a) (b) 
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• Performance with imbalanced data: Table 4 illustrates that the model's performance on the 

imbalanced dataset highlights disparities between classes. With K=5, the model achieves high 

results for the DoS and DDoS. However, the Theft class has a precision of 0.929 but a recall of 

only 0.813, leading to a low F1-score of 0.8667. The Normal class has a precision of 0.974, a 

recall of 0.8929, and an F1-score of 0.9317. The macro average F1-score is lower than the 

individual majority class scores which demonstrates the model's bias towards majority classes. 

• Performance with balanced data: The model achieves high results for the balanced dataset 

across all classes. The minority classes achieve scores that range from 0.99 to 1. The macro 

average F1-scores for the balanced dataset increases, reflecting a more reliable and unbiased 

detection capability. These enhancements highlight the importance of balancing datasets in 

intrusion detection for IoT environments, leading to more robust and comprehensive security 

measures. Despite the lower accuracies in the balanced datasets, the metrics for precision, recall, 

and F1-score are more consistent and higher. This reflects a more reliable and fair evaluation of 

the model's performance across all classes. The balanced dataset reduces the skewness caused by 

imbalanced class distributions, leading to a model that performs well across the board and 

provides more meaningful performance metrics.  

 

Figure 4 shows the confusion matrices of KNN models. The top row shows results from the 

imbalanced dataset with varying values of k (5, 9, and 13), while the bottom row reflects the 

balanced dataset. The matrices reveal that as k increases, the classification accuracy for the 

imbalanced dataset degrades slightly, especially for minority classes like Normal and Theft. In 

contrast, balancing the dataset leads to more consistent and accurate predictions across all 

categories, even as k changes. This demonstrates the importance of dataset balancing in improving 

KNN's performance, particularly in handling minority classes more effectively. 

 

Table 4: The classification results of the KNN models. 
 

Model Class 
Imbalanced Dataset Balanced Dataset 

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy 

k
-N

ea
re

st
 N

ei
g

h
b

o
rs

 

k = 5 

DoS 0.994 0.994 0.994 

99.5% 

0.979 0.983 0.981 

99.2% 

DDoS 0.995 0.995 0.995 0.984 0.980 0.982 

Reconnaissance 0.997 0.992 0.995 0.996 0.996 0.996 

Theft 0.929 0.813 0.867 1 1 1 

Normal 0.974 0.893 0.932 0.999 1 0.999 

Macro Average 0.978 0.937 0.956 0.992 0.992 0.992 

k = 9 

DoS 0.992 0.992 0.992 

99.2% 

0.976 0.980 0.978 

99.0% 

DDoS 0.993 0.993 0.993 0.982 0.975 0.978 

Reconnaissance 0.993 0.988 0.990 0.995 0.995 0.995 

Theft 0.722 0.812 0.765 1 1 1 

Normal 0.941 0.762 0.842 0.999 1 0.999 

Macro Average 0.928 0.909 0.916 0.990 0.990 0.990 

k = 13 

DoS 0.990 0.991 0.990 

99.1% 

0.973 0.981 0.977 

98.9% 

DDoS 0.992 0.992 0.992 0.983 0.971 0.977 

Reconnaissance 0.990 0.984 0.987 0.993 0.995 0.994 

Theft 0.722 0.812 0.765 0.999 1 1 

Normal 0.948 0.655 0.775 0.998 1 0.999 

Macro Average 0.928 0.887 0.902 0.989 0.989 0.989 
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Figure 4: The confusion matrices of KNN models with balanced and imbalanced datasets. 
 

2. Gradient Boosting: We conducted experiments for the GB using 10, 50, and 100 estimators to 

explore how the number of trees impacts model accuracy and generalization. The results are 

shown in Table 5. 

 

• Performance with imbalanced data: With all the estimators, the model fails to detect the 

minority classes; “Theft” and “Reconnaissance” with zero results across all metrics. With 10 

estimators, the model shows high precision for “DoS” and “Reconnaissance” attacks but 

significantly lower recall, indicating that it correctly identifies positives but misses many 

actual positives of these attacks. The “DDoS” attack has high recall but low precision, meaning 

it captures most positives but with many false positives. Despite the good accuracies, the 

models have low F1-scores which are: 0.338, 0.528, and 0.549 with 10, 50, and 100 estimators, 

respectively. This signifies that the model is performing poorly in balancing precision and 

recall, and the results include unsatisfactory false positives and false negatives. 

• Performance with balanced data: Balancing the dataset succeeds in significantly enhancing 

the precision and recall of the minority classes from 0 to reach ranges between 0.86 to 0.99 

and 0.75 to 1 for precision and recall, respectively. With 10, 50, and 100 estimators 

respectively, the accuracy increases to approximately 80%, 92%, and 95%, and the F1-score 

remarkably incremented to 0.79, 0.92, and 0.95. These elevated results prove that balancing 

the datasets leads to more accurate classification and reduced false positives and negatives. 

 

Figure 5 shows the GB confusion matrices. As illustrated, the GB algorithm suffers from 

significant bias when trained on an imbalanced dataset, consistently favoring majority classes like 

while neglecting minority classes. This skewness persists even as the number of estimators 

increases, highlighting the challenge of imbalanced data. In contrast, the balanced dataset leads to 

more accurate classification across all classes. As the number of estimators increases, the balanced 

dataset consistently improves the model's performance on minority classes, emphasizing the 

importance of addressing class imbalances for reliable and efficient results. 
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Table 5: The classification results of the GB models. 

 

Model Class  
Imbalanced Dataset Balanced Dataset 

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy 

G
ra

d
ie

n
t 

B
o

o
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g

 

10 

Estimators 

DoS 0.959 0.459 0.621 

73.3% 

0.808 0.553 0.656 

79.50% 

DDoS 0.669 0.996 0.801 0.649 0.860 0.739 

Reconnaissance 0.989 0.155 0.268 0.807 0.815 0.811 

Theft 0 0 0 0.900 1 0.947 

Normal 0 0 0 0.862 0.751 0.803 

Macro Average 0.524 0.322 0.338 0.805 0.796 0.791 

50 

Estimators 

DoS 0.854 0.890 0.872 

88.1% 

0.914 0.734 0.814 

91.8%. 

DDoS 0.902 0.878 0.890 0.812 0.916 0.861 

Reconnaissance 0.997 0.788 0.880 0.943 0.980 0.961 

Theft 0 0 0 0.978 0.982 0.980 

Normal 0 0 0 0.953 0.978 0.965 

Macro Average 0.551 0.511 0.528 0.920 0.918 0.916 

100 

Estimators 

DoS 0.917 0.864 0.890 

90.3% 

0.925 0.826 0.873 

94.7% 

DDoS 0.888 0.937 0.912 0.883 0.925 0.904 

Reconnaissance 0.996 0.895 0.943 0.955 0.989 0.972 

Theft 0 0 0 0.993 1 0.996 

Normal 0 0 0 0.980 0.997 0.989 

Macro Average 0.560 0.539 0.549 0.947 0.947 0.947 

 

 
 

Figure 5: The confusion matrices of GB models using balanced and imbalanced datasets. 

 

3. Support Vector Machine: The SVM models’ performance on the imbalanced dataset shows 

significant variability across different classes and values of the regularization parameter. The 

results are recorded in Table 6. The regularization parameter “C” was tuned to balance the trade-

off between maximizing the margin and minimizing classification errors, as higher values may 

lead to overfitting while lower values provide a more generalized model.  
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• Performance with imbalanced data: With C = 1 the model achieves a moderate precision of 

0.675 and recall of 0.509 for the “DoS” class, resulting in an F1-score of 0.58. The “DDoS” 

class has an F1-score of 0.712. However, minority classes like “Theft” and “Normal” are not 

detected at all, reflected by zero values in their precision, recall, and F1-scores. Increasing C 

to 5 improves the metrics for most classes and boosts the total accuracy from 0.6638 to 0.9395. 

However, the performance degraded with C = 10, illustrating the complex relationship 

between the regularization parameter and model performance in imbalanced contexts. 

Nevertheless, the F1-score for the imbalanced dataset remains low, indicating the challenge 

of handling imbalanced data. 

• Performance with balanced data: Balancing the dataset remarkably enhances the results 

across all metrics for most classes. It increases the F1-score of the minor classes to above 0.99 

across all values of C, indicating an improvement in the models’ balance between precision 

and recall. This means that the model is more accurate in identifying positive instances while 

minimizing both false positives and false negatives. The results show that SVM is sensitive to 

imbalanced classes’ distribution and to the choice of its regularization parameter. 

 

The confusion matrices for the SVM algorithm are displayed in Figure 6. Increasing the regulation 

parameter in the imbalanced dataset leads to better classification of majority, but it continues to 

perform poorly on minority. At C=10, the "DoS" class has 223,257 correct predictions, while the 

minority classes are still largely misclassified, reflecting severe skewness. In contrast, the 

balanced dataset results in more evenly distributed classifications across all classes, even though 

overall accuracy might slightly decrease. For example, at C=10, the "Reconnaissance" class 

achieves 17,865 correct predictions compared to just 17,265 in the imbalanced dataset, indicating 

more reliable performance. The balanced dataset reduces the bias towards majority classes, 

leading to more effective classification across all classes. 

 
Table 6: The classification results of the SVM models. 

 

Model Class  
Imbalanced Dataset Balanced Dataset 

Precision  Recall  F1-score Accuracy Precision  Recall  F1-score Accuracy 

S
u

p
p

o
rt

 V
ec

to
r 

M
a

ch
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e
 

C=1 

DoS 0.675 0.509 0.58 

66.4% 

0.924 0.956 0.94 

96.8% 

DDoS 0.652 0.784 0.712 0.969 0.914 0.941 

Reconnaissance 0.787 0.952 0.862 0.971 0.982 0.977 

Theft 0 0 0 0.997 0.99 0.994 

Normal 0 0 0 0.982 0.999 0.99 

Macro Average 0.423 0.449 0.43078 0.969 0.968 0.96825 

C=5 

DoS 0.915 0.963 0.939 

94% 

0.935 0.967 0.95 

97.6% 

DDoS 0.969 0.918 0.943 0.974 0.926 0.95 

Reconnaissance 0.834 0.96 0.893 0.979 0.988 0.983 

Theft 0 0 0 0.999 1 0.999 

Normal 1 0.06 0.112 0.994 0.999 0.996 

Macro Average 0.744 0.58 0.57731 0.976 0.976 0.97583 

C=10 

DoS 0.814 0.675 0.738 

78.1% 

0.936 0.972 0.954 

97.8% 

DDoS 0.757 0.863 0.807 0.977 0.928 0.952 

Reconnaissance 0.857 0.96 0.9 0.983 0.988 0.986 

Theft 0 0 0 0.999 1 0.999 

Normal 1 0.095 0.174 0.994 1 0.997 

Macro Average 0.685 0.519 0.524 0.978 0.978 0.97752 
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Figure 6: The confusion matrices of SVM models using balanced and imbalanced datasets. 
 

5. Conclusion and Future Work 

 

In conclusion, this work evaluates the impact of balancing the BoT-IoT dataset on the performance of 

learning-based IDSs using KNN, GB, and SVM. The study highlights the critical role of dataset balancing 

in enhancing the detection capabilities of these models. We employ both random under-sampling and 

SMOTE to address dataset imbalance. The findings of our experimental work demonstrate that balanced 

datasets reduce the disparity in class detection and significantly improve the models’ performances, as 

reflected in increased F1-scores. The importance of this study lies in its practical implications for IoT 

security systems. It also demonstrates that accuracy alone can be misleading in imbalanced datasets and 

emphasizes the need to examine other metrics like precision, recall, and F1-score to ensure a more 

accurate and comprehensive evaluation. An effective IDS must accurately detect malicious activities 

while minimizing false positives and false negatives, which is crucial for maintaining the security and 

integrity of network systems.  

Future work includes investigating the impact of different balancing methods such as Adaptive Synthetic 

(ADASYN). Another potential area of research is the application of deep learning techniques, such as 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs), to the balanced BoT-IoT 

dataset. Finally, real-time testing and evaluation of these models in a live network environment will be 

crucial to validate their effectiveness and reliability in IoT ecosystems. 
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