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Abstract: The Scene Graph is a modern structured representation of an image scene that explicitly 

describes the scene as a set of objects, attributes, and links between the objects (relationships). With the 

great advancements in the computer vision field, researchers dedicated their efforts towards more 

complex reasoning and a high level of understanding of visual scenes. Tasks like Visual Question 

Answering, image generation, and cross-modal retrieval are examples of Complex vision tasks that 

require a high level of visual scene understanding. Scene Graph is an effective data structure that 

highlights complex visual relationships presented in a scene. In this work, we provide a comparative 

analysis of Scene Graph Generation (SGG) backbone models. The contributed work aims to compare the 

Convolution Neural Networks (CNN) backbones and the vision transformer-based backbones using the 

RelTR model. The conducted analysis proved that both SwiftFormer L3 and MiT-B2 transformer 

backbones increased the model performance over the ResNet50 CNN backbone by 2.1 % and 2.5% 

Recall@50 respectively when experimented on the same Visual Genome 50 test split. The Visual Genome 

50 is a tailored version of The Visual Genome dataset. It contains only the 50 most common relationships 

and the most frequent 150 object classes. 

 

Keywords: Scene Graph, Scene Graph Generation, Transformer-Based Backbone, Visual Relationship 

Detection, Low Resolution 

 

 

1. Introduction 

https://ijicis.journals.ekb.eg/ 

 



2 Mohammad Essam et al. 

 

In recent years, computer vision has evolved as a cutting-edge solution to incorporate visual scene 

analysis features into machines. Starting from classical computer vision systems, they contained a 

sequence of processes to solve simple visual tasks like face recognition [1] and image classification [2]. 

These processes involve image acquisition, data preprocessing, hand-crafted feature extraction, and 

pattern recognition. Most of the contributions in these classical systems were focused on hand-crafted 

feature extraction techniques and how to overcome the hardware limitations at that time. 

 

With the rapid advancement of hardware capabilities, computer vision systems gained extensive attention 

after introducing the modern CNN AlexNet [3]. This innovation paved the way for working on more 

complex CNN architectures to solve challenging visual tasks like SGG [4], cross-modal retrieval [5], and 

small object detection [6]. Building on the foundation of the CNN, Faster R-CNN [7] was proposed to 

solve object detection task with a new concept called backbone. The backbone of Faster R-CNN is a pre-

trained CNN which acts as an automatic feature extractor and boosts model performance. Many advanced 

CNN architectures adopted the same concept later in object detection [8] as well as other tasks such as 

semantic segmentation [9] and pose estimation [10]. 

 

Accompanied by the transformer research wave in natural language processing [11], the computer vision 

community started to adapt the transformer techniques to several fundamental computer vision problems 

like image recognition [12], and instance Segmentation [13]. With the progressive contributions of vision 

transformers [14], [15], most of the modern vision transformers achieved better results than the complex 

CNNs in almost every computer vision task [16]. These results suggest that replacing CNNs with vision 

transformers can boost the performance of any module.  

 

Consequently, some research directions tended to design novel data representations [17] that replace the 

pixel values with better visual information for the computer vision models. One important image data 

representation is the Scene Graph. The Scene Graph concept was formulated by Johnson et al. [18] to 

crack the image retrieval task. Scene Graph encodes the whole visual scene as a group of triplets (Subject 

- Relationship - Object), where each item in the scene can be whether subject or object and connected to 

other items by relationships. The scene items are represented by graph nodes and the relationships serve 

as the graph edges that connect these nodes.    

 

As the initial Scene Graph developed was manually labelled [18], a great effort has been dedicated to 

automating the process of SGG [19], [20], [21], to facilitate the utilization of Scene Graphs in downstream 

vision tasks. One of the promising SGG architectures contributed was the RelTR [22] model.  It adapted 

the transformer architecture in the task of SGG to boost the performance and achieve State-Of-The-Art 

(SOTA) results. 

 

The contribution of this paper is to provide a comparative analysis between transformer-based backbones 

and CNN backbones for the SGG task using the RelTR model. Our analysis shows that both SwiftFormer 

L3 [23] and MiT-B2 [14] transformer backbones boosted the model performance over the ResNet50 [24] 

CNN backbone by 2.1 % and 2.5% Recall@50 respectively when tested on the same Visual Genome 50 

dataset [25].  

 

The taxonomy of this research is as follows: Section 2 provides a comprehensive survey about the related 

research done in the SGG task. Section 3 discusses the contributed system architecture along with its 
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hardware configuration. The experimental results and their outcomes are demonstrated in Section 4. 

Section 5 outlines the conclusion and the potential future directions for this research. 

 

2. Related Work 

 

The Scene Graph serves as a global scene encoder, where the scene objects along with their relationships 

represent the nodes and the edges between these nodes respectively. As noticed in Figure. 1, the SGG 

model takes a colored image and produces a graph where Scene Objects (e.g., Giraffe, Head, Grass) are 

connected through the relationships (on, has). The following sub-sections will delve into the novel 

contributions of SGG and Transformer-based backbones concepts [26]. 

 

 
 

Figure. 1: An Illustration of Scene Graph Generation Task 
 

2.1. Scene Graph Generation 

 

Building on the success of the DETR [27] transformer in object detection task, Cong, et al. [22] introduced 

the RelTR SGG transformer. The RelTR follows the same building blocks of DETR as the input image 

is given to a CNN backbone, this backbone is followed by a vision transformer encoder-triple decoder 

architecture which is the main modification from the DETR architecture. This modification enabled the 

model to extract triplet features for (subject-relationship-object) and so enhance the performance for the 

SGG task.  

 

Focusing on the process of human perception, Zhang, et al. [28] modified the Scene Graph to add an 

importance factor for each relationship (edge) in the graph. This factor upgraded the default message-

passing modules to a saliency-based message-passing one, enabling the model to focus more on the most 

crucial relationships to increase the SGG accuracy. Zheng, et al. [29] proposed an SGG prototype-based 

network to solve the problem of intra-class variation in relationship classes. The contributed network 

modelled the relationships with an aligned prototype to generate robust embedding space that is vital for 

relationship detection. Kundu, et al. [30] invented a generative approach to tackle the SGG problem. They 

utilized a generative two-stage transformer, where the first stage samples an initial Scene Graph from the 

detected objects, and then the second stage filters the generated graph with relationship refinement as the 

top priority.  
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2.2. Transformer-Based Backbones 

 

Wu, et al. [31] employed the concept of transformer backbone in the biological cell detection task. They 

introduced a modified Yolov5s model, incorporating a Swin V2 [32] transformer as a feature extraction 

backbone. This backbone boosted cell detection accuracy by acquiring vital global visual information.  

Han, et al. [33] designed a deep-learning network to enhance wireless communication quality. The 

proposed network is built upon a basic transformer backbone that provides feedback on the 

communication state information. This technique exhibits an advanced performance over the classic 

methods. Reza, et al. [34] extended the concept of the transformer-based backbone in the segmentation 

of temporal actions in videos. They introduced a dual attention mechanism that boosted the performance 

of the transformer backbone in capturing better hierarchical details. They also included cross-connections 

between both transformer encoder and decoder to outperform the original transformer performance. 

Motivated by the results of transformer backbones in 2D computer vision tasks, Yang, et al. [35] utilized 

the transformer backbone concept in the indoor 3D scene understanding. They pretrained a Swin3D model 

on a large-scale 3D synthetic dataset to generalize on various segmentation and detection downstream 

tasks. The Swin3D model showed a superior performance when validated for scalability and generality. 

 

3. Methodology 

 

The following sub-sections introduce a specified description of the main components of our research. 

Starting from the hardware configuration needed to train the models, we delve into the description of the 

dataset used for training the contributed models. Finally, we conclude the section with an emphasis on 

the system architecture highlighting each component and its role in the system.  

 

3.1. Hardware Specifications 

 

The contributed analysis is conducted on one Google Colab GPU instance. This instance contains an Intel 

Xeon 2.2 GHz CPU, 53 GB of system RAM, and an Nvidia L4 GPU with 24 GB of VRAM. The dedicated 

GPU is optimized specifically for accelerated AI model training, which enables finishing the training of 

all experiments in around 200 GPU hours only. 

 

3.2. Dataset 

 

The Visual Genome [25] dataset is a pioneering dataset for the SGG task. With more than 108,000 images, 

Visual Genome is the default choice to test the generalization of any SGG model as each image has an 

average of 25 relationships taken from real-life scenarios.  In this research, we utilize a customized version 

of this dataset named Visual Genome 50 [4], which contains only the 50 most appearing relationships 

besides the top-occurring 150 object classes. The key idea of working on Visual Genome 50 is to prevent 

the long tail distribution problem [36] in the original Visual Genome. Figure. 2 presents a sample image 

from Visual Genome 50 accompanied by part of its labels. The dataset is divided into training, validation, 

and test sets with the following proportions 70%, 5k examples and 30% respectively.  The training 

strategy utilized 70% of the dataset, while the validation set was randomly selected from the training data 

in each epoch, and the final 30% was kept for testing scenarios. 
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Figure. 2: A sample from the Visual Genome 50 dataset, where a) represents the image and b) is the partial graph label of the 

image  

 

3.3. Model Architecture 

 

The proposed system architecture in this research is mainly inspired by the RelTR SGG model. As shown 

in Figure. 3a, the original system architecture of the RelTR model is built upon using ResNet50 CNN 

[37] as the main feature extractor for the whole system. The extracted features are then passed through 

the RelTR encoder to produce a continuous representation from the input. The encoded representation is 

finally passed to the RelTR decoder to generate the scene graph for the given input image. As Figure. 3b 

highlights, that the key change in the proposed model is the utilization of a vision transformer backbone 

instead of the usual CNN backbone. The use of MiT-B2 [14] and SwiftFormer L3 [23] transformer 

backbones within this research are based on selecting those having nearly the same number of parameters 

as the ResNet50 CNN, (see Table 1), to allow for a fair comparison. 

 

Table 1 contributes a comparison between the three backbone models utilized in this research. The table 

focuses on the differences in the complexity of each model, measured by the number of parameters, 

reflecting the varying techniques and efficiencies in their designs. 
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Figure. 3: A Diagram of  a) The original RelTR Model, b) The modified RelTR Model 

 
Table 1: A Comparison between ResNet50, SwiftFormer L3, and MiT-B2 Models 

 

Backbone Model  Backbone Type Number of Parameters 

(Millions) 

ResNet50 [37] CNN 25.6 

SwiftFormer L3 [23] Transformer 28.5 

MiT-B2 [14] Transformer 24.2 

 

3.3.1. SwiftFormer-L3 Transformer 

 

The SwiftFormer-L3 transformer is the largest variant of the SwiftFormer transformer series that is 

designed specifically to boost the mobile inference speed.  The SwiftFormer-L3 proposed an efficient 

design, unlike the traditional transformer architectures, by replacing the heavyweight self-attention [11] 

operation with a more lightweight additive attention operation. This operation enabled a more real-time 

architecture as well as high accuracy in many downstream computer vision tasks. 

 

3.3.2. MiT-B2 Transformer 

 

The MiT-B2 transformer is one of the SegFormer transformers family that vary from SegFormer-B0 to 

B5. The SegFormer architecture consists of a multi-scale encoder (the MiT transformer) as well as a 

simple MLP decoder that combines the features from the different scales. Unlike most vision transformer 

[38], the MiT-B2 transformer does not use the positional encoding technique, which means there is no 

interpolation process when using input data of different resolutions. The MiT-B2 is built hierarchically 

so that the encoder model can extract both local and global features from a given input. This feature 

boosted the performance of the architecture, especially in segmentation tasks. 

 

3.3.3. RelTR Model 
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The RelTR SGG model is a lightweight transformer architecture that emerged as a modified version of 

the DETR transformer to tackle the SGG task. The RelTR transformer consists of a transformer encoder 

and a triplet transformer decoder, The main role of the encoder is to project the input sequence into a 

high-level continuous space that keeps all the information from the input sequence. The triplet decoder 

gets the encoded high-level sequence and the previous output to generate the required scene graph. The 

main cause of utilizing a triplet decoder is due to the nature of the SGG task which requires predicting 

the scene graph in the form of triplets (Subject-Relationship-Object). 

 

4. Experiments and Results 

 

In this section, the performed experiments are explained, including the formulation of the evaluation 

metrics used. The details of training parameters are then highlighted. The performance comparison 

between the CNN backbone and transformer backbones is provided as the final part of the section.  

 

4.1. Evaluation Metrics 

 

The Scene Graph Detection (SGDet) metric is frequently used in the evaluation of the SGG models, 

mainly when focusing on measuring how well the model can predict both the objects and the relationships 

in the scene. The SGDet is built upon the Recall@K formula, which calculates both the portion of correct 

relationship predictions as well as the involved object detection. The Recall@K in the SGG task is 

computed with different K values like 20, 50, and 100. We utilize the K parameter as 50 in the performed 

experiments. To compute Recall@K, the SGG model predicts a set of (Subject, Relationship, Object) 

Triplets, the top K triplets are then compared to the ground truth graph of the input image. After that, a 

confusion matrix is calculated to get the False Negative (FN) and the True Positive (TP) rates which are 

required parameters to estimate the Recall using Eq. (1). 

  

                  𝑅𝑒𝑐𝑎𝑙𝑙 =  
 𝑇𝑃 

 𝑇𝑃+𝐹𝑁 
                             (1) 

 

4.2. Training Setup  

 

In all our trained models, we follow the same training setup as [22]. We keep the same data splits of the 

Visual Genome 50 and the fixed image resolution of 384 × 384 for all the performed experiments. Two 

learning rates of 10-4 and 10-5 are utilized for the RelTR transformer and the transformer backbones (MiT-

B2, SwiftFormer L3) respectively. All training models concluded after 50 epochs as in [23] to provide a 

fair comparison. 

 

4.3. Experimental Results 

 

In the following experiment, we replaced the CNN-based feature extraction part of the original RelTR 

model with a transformer backbone utilizing SwiftFormer L3 and MiT-B2 respectively. We compare 

these results with the original RelTR model on the same resolution 384x384 using Visual Genome 50 test 

split. As noticed in Table 2, both the proposed modifications outperform the original architecture by 2.1 

% and 2.5 % Recall@50 respectively.  
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Table 2: Experimental Results on the Visual Genome 50 Test Split 
 

Model  Backbone Model Recall@50 

Original RelTR ResNet50 18.3 

Modified RelTR SwiftFormer L3 20.4 

Modified RelTR MiT-B2 20.8 

 

These results indicate that the vision transformers are better feature extractors than the traditional CNN 

under the same train and test constraints. Unlike CNNs, which focus on extracting visual features locally, 

vision transformers employ attention mechanisms to capture the global context within the image. This 

leads to a better understanding of complex scenes and thus boosts the performance over the CNNs. 

Comparing the trained models with the benchmark SwinRelTR [39], that achieves higher recall@50 but 

is considered a more complex model, it highlights that lightweight vision transformer backbones like 

MiT-B2 and SwiftFormer L3 enhance the recall with reduced computational complexity compared to 

SwinRelTR. 

 

5. Conclusion 

 

In this research, we discussed the idea of using vision transformers as backbones for the SGG models 

instead of the classic CNN backbone. We applied two experiments with different transformer 

architectures (SwiftFormer L3 and MiT-B2) as backbones for the RelTR SGG transformer. Our 

experiments outperformed the original RelTR by 2.1 % and 2.5 % Recall@50 respectively, thus 

suggesting that SGG models can benefit from the utilization of vision transformer backbones as the main 

feature extractors. Regardless of the observed improvements, this study has specific limitations. The 

analysis is limited to the Visual Genome 50 dataset, which may not generalize well to other datasets with 

different distributions of object classes and relationships. Furthermore, the comparison is limited to a 

limited selected transformer backbone models. In future work, more vision transformers can be tested as 

feature extractors like SwinV2 [40] and FasterViT [41]. Also, more architectural modifications in the 

RelTR model can be applied to add more complicated graphical modules for the sake of better scene 

graphs generated. Finally, expanding the contributed comparative analysis to a wider range of datasets to 

validate the generalizability of the results.  
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