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Abstract: Regression testing is a vital category of software testing. Regression testing is done to make sure 

that the changed code does not have any unexpected negative effects on the software. Regression testing, 

despite its significance in ensuring software quality, can be a costly phase in the software testing process. 

Typically, the more tests there are, the longer it takes for them to run. As a result, the price of regression 

testing rises with the quantity of tests. So, the objective is to reduce the execution time of the regression 

testing by removing test cases that are redundant or have lower importance in terms of their capacity to 

uncover faults. The primary aim of test case reduction is to decrease the number of test cases, which, in turn, 

lowers the time and expenses associated with their execution. This paper presents an approach to minimize 

the execution time of regression testing while preserving code coverage, achieved through the utilization of 

test suite reduction techniques and parallel automation execution. The employed test suite reduction 

approach involves utilizing a clustering technique and a genetic algorithm. The resulting reduced test suite 

is then executed in parallel to achieve the shortest possible execution time. The results demonstrate that the 

proposed approach can cut down execution time by 75%.  

 

Keywords: Regression Testing, Test Suite Reduction, Clustering, Genetic Algorithm, Parallel Execution. 

 

 

1. Introduction 

 

Regression testing [1][2] is a form of software testing focused on identifying software defects. It is performed 

to ensure that new or modified software components or products still work as expected and that they do not 

https://ijicis.journals.ekb.eg/ 
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regress in behaviour. Regression testing can be performed manually or by an automated system. Automated 

regression testing [3][4] is accomplished using scripts that are created by either a human or another program. 

The scripts are executed on a platform that allows them to interact with the application's user interface and/or 

integrate with other systems in place. Manual regression tests are typically created as lists of steps for a tester 

to perform, with input values and expected results. Regression tests are often classified into two categories: 

functional and non-functional. Functional regression testing [5] ensures that the application still performs 

application-related functions after a code change, whereas non-functional regression testing ensures that the 

application continues to meet all its quality attributes such as scalability, performance, availability, and so on 

after a code change. 

 
Regression test suites can be expensive to maintain because they grow exponentially with every change. It is 

important to keep the test suite small to avoid unnecessary maintenance costs and time. When bugs are 

addressed, new features are introduced, or old features are removed, it becomes necessary for the tester to 

update the existing test suite. This entails adding new test cases. However, it's important to note that the 

existing test cases may lose their relevance as they may have been modified due to bug fixes. When new 

features are introduced, the tester must incorporate new test cases, and when old features are removed, the 

tester should eliminate test cases associated with the outdated features while also introducing new test cases 

to ensure that the removal of old features doesn't impact the unaffected features. Yet, the actual challenge lies 

in identifying a subset of test cases that are essential to verify the System Under Test (SUT). Techniques for 

test case reduction offer the most cost-effective solution to this issue. 

 

Regression testing's test suite reduction involves minimizing the number of test cases that need to be executed 

during a regression testing cycle. The objective behind test suite reduction is to enhance the testing process by 

pinpointing the smallest set of test cases that can offer the highest test coverage for the application being tested. 

The primary motivation for test suite reduction is resource and time conservation, as executing a reduced test 

suite demands less time and effort compared to running the entire test suite. By reducing the number of tests, 

the testing process can achieve greater efficiency while still upholding the testing quality. 

 

There exist multiple strategies for handling large test suites, such as:  

 

1. Test Case Prioritization [6][7][8]: prioritize the tests based on their importance, impact, and risk, and 

run the most critical tests first. 

2. Test Case Selection [9]: Choose a subset of the test cases that delivers sufficient coverage and disregard 

those that do not contribute significantly.  

3. Test Case Minimization [10][11]: minimize the test suite by identifying redundant or irrelevant tests 

within the suite. 

Parallel automation testing [12][13] refers to the technique of running automated tests simultaneously on 

multiple devices or environments. This approach allows for faster and more efficient testing, as tests can be 

executed in parallel, reducing the overall testing time. Parallel automation testing can be done using various 

tools and frameworks that support parallel execution of tests, such as Selenium Grid [14]. It also enables 

testing teams to quickly identify issues across different platforms and environments, ensuring a more 

comprehensive testing approach.  
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This paper introduces an improved approach for decreasing the total duration of regression testing. Section 2 

contains a review of relevant literature. In Section 3, we will provide a detailed description of all the 

techniques, testing technologies, and tools employed in the proposed approach's design and implementation. 

The experimental findings will be deliberated in Section 4, and Section 5 will conclude the paper. 

 

2. Literature Review 

 

In the software testing field, the increasing complexity and size of modern software systems have created an 

urgent need for efficient and effective testing approaches. Test suite reduction has emerged as a promising 

strategy to tackle this challenge. The primary objective of test suite reduction is to minimize the size of the 

test suite while retaining its ability to detect faults, thereby reducing the time and resources necessary for 

testing. Table 1 outlines the advantages and disadvantages found in various literature sources when dealing 

with extensive test suites. 

 

In 2017 S. K. Harikarthik et al [15] presented an innovative approach for enhancing regression testing by 

prioritizing test cases. This approach focuses on the selection of the most pertinent test cases from a test suite 

to enhance testing efficiency. By combining artificial neural networks and a specialized optimization 

algorithm, the proposed technique enhances the process of selecting tests for regression testing. The primary 

emphasis of the paper is on attaining the best possible selection of test suites while integrating strategies for 

prioritizing test cases. The result shows that the time and memory demands for test case prioritization are 

lower in comparison to existing methods, and the results are highly accurate. The results illustrate that the 

combined ANN-Whale method utilized in this research surpasses alternative classifiers, achieving 

significantly elevated levels of accuracy. 

 

In 2019 E. Cruciani et al [16] discussed scalable techniques for shrinking test suites while preserving fault 

detection. It highlights methods suitable for large software systems, offering insights into efficient testing for 

complex applications. The paper presents two novel techniques, FAST++ and FAST-CS, designed to 

efficiently identify a subset of test cases for test case reduction. These approaches utilize intelligent heuristics 

derived from the field of big data, providing different levels of precision and efficiency. The findings indicate 

that these approaches achieve fault detection rates comparable to cutting-edge technologies while significantly 

enhancing efficiency when applied to a real-world dataset comprising over 500,000 test cases. 

 

In 2020 O. Ö. Özener and H. Sözer [17] introduced an innovative formulation for addressing the issue of 

minimizing test suites with multiple criteria, employing integer linear programming. The work pinpointed 

deficiencies in the existing formulations that could result in less-than-optimal solutions. The result shows that 

employing a linear formulation yields superior outcomes compared to the current best method concerning the 

identical objective function and criteria set. These criteria encompass statement coverage, the ability to detect 

faults, and the time it takes for test execution. Furthermore, the linear formulation offers improved time 

efficiency compared to non-linear approaches, enhancing scalability for more extensive problems. 

 

In 2020 Carmen Coviello et al [18] presented GASSER (Genetic Algorithm for Test Suite Reduction), a novel 

approach for Test Suite Reduction (TSR) that utilizes a multiobjective evolutionary algorithm called NSGA-
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II. GASSER achieves TSR by simultaneously maximizing statement coverage and the diversity of test cases 

while minimizing the size of the resulting reduced test suites. The initial study demonstrates that GASSER 

significantly reduces the size of test suites while having a minimal impact on fault-detection capability 

compared to traditional approaches. 

 

In 2020 Nour Chetouane et al [19] presented an algorithm for minimizing test suites through a machine 

learning approach that integrates k-means clustering with binary search. The algorithm's concept involves 

grouping closely related test cases and selecting a representative test case from each cluster to form the reduced 

test suite. Binary search is employed to determine the optimal number of clusters, ensuring a reduction in the 

test suite without significantly deviating from the coverage or mutation score achieved in the original test 

suite. In all instances examined, the proposed algorithm managed to significantly decrease the number of test 

cases, achieving a swift reduction, particularly when contrasted with alternative methods for reducing test 

suites. 

 

In 2021 C. Xia et al [20] introduced an evolutionary multi-objective optimization algorithm designed for 

reducing test suites through clustering. They applied the K-means method to group related test cases into 

clusters, followed by the application of the evolutionary algorithm to remove redundant test cases based on 

the clustering results. The experiments conducted revealed that this approach achieved the highest test case 

code coverage rate and demonstrated a missing failure rate on par with other existing techniques. 

 

In 2022 Chen-Hua Lee and Chin-Yu Huang [21] the objective of this research paper is to decrease the size of 

a test suite while maintaining or improving its ability to detect faults during regression testing. This is achieved 

by utilizing cluster-based test suite reduction (CB-TSR) methods, which incorporate two testing criteria. Based 

on the experimental findings, it is evident that the suggested CB-TSR methods offer reduced processing costs 

and enhance effectiveness while maintaining or surpassing the fault detection capability of the reduced test 

suite. 

 

In 2023 S. M. Nagy et al [22] proposed an improved approach to optimize the regression testing process 

through test suite reduction. Their proposed method employs the K-means++ clustering technique to group 

test cases based on their similarities. Additionally, they utilize a multi-objective genetic algorithm to minimize 

the test suite within each cluster while considering code coverage. The outcomes indicate that this proposed 

approach outperforms previously established methods, both in terms of reducing the size of the test suite and 

achieving a higher level of code coverage. 

 

3. Design and Implementation 

 

This section clarifies the methodology and technical framework employed to address the research objectives. 

This segment provides a detailed description of how the research was carried out, encompassing the selection 

of research methods and tools, as well as the overall structure of the study. 
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Table 1 Overview of approaches pros and cons. 

Research Pros Cons 

S. K. 

Harikarthik 

et al. (2017) 

[15] 

-Optimal Selection: The paper focuses on 

optimal test suite selection and demonstrates its 

practical relevance in real-world software testing 

scenarios. 

-Innovative Approach: The paper introduces a 

novel technique by combining artificial neural 

networks and a specialized optimization 

algorithm, potentially contributing to 

advancements in regression testing. 

- Complexity: The utilization of advanced techniques like 

artificial neural networks and optimization algorithms 

might introduce complexity that could hinder practical 

implementation. 

-Resource and Skill Requirements: The implementation 

of artificial neural networks and optimization algorithms 

might demand specialized resources and expertise. 

E. Cruciani 

et al. (2019) 

[16] 

-Scalability Focus: The paper emphasizes 

scalable techniques that address a critical need in 

modern software development, where large-scale 

systems are common. 

-Efficiency Enhancement: The paper addresses a 

critical need for optimizing testing processes, 

offering approaches to reduce test suites while 

maintaining effectiveness, thereby saving time 

and resources. 

-Adoption challenges: Implementing new test suite 

reduction techniques may require changes to existing 

testing processes, tools, and workflows. This can introduce 

challenges related to adoption, integration, and training for 

the testing team. 

-Effectiveness trade-offs: While test suite reduction 

techniques aim to reduce the size of the test suite, there is 

a potential trade-off between test size reduction and fault 

detection capability. Some techniques may inadvertently 

remove critical test cases, leading to a potential loss in 

defect identification. 

O. Ö. 

Özener and 

H. Sözer 

(2020) [17] 

-Effective Formulation: The paper offers a well-

constructed formulation for addressing the multi-

criteria test suite minimization problem. This 

highlights the author’s ability to provide a clear 

and actionable approach to tackling the problem. 

-Comprehensive Evaluation: The paper 

evaluates its approach using multiple criteria, 

including statement coverage, fault-revealing 

capability, and test execution time. This 

comprehensive evaluation provides a holistic view 

of the proposed method's effectiveness. 

-Complexity Concerns: The novelty of the proposed 

approach might introduce additional complexity, 

potentially making it difficult to implement and 

comprehend, especially for those not well-versed in the 

specific domain. 

-Limited Applicability: Depending on the specifics of the 

proposed formulation, it might only apply to a specific 

subset of multi-criteria test suite minimization problems, 

limiting its broader utility. 

Carmen 

Coviello et 

al (2020) 

[18] 

-Test suite reduction: Genetic algorithms can 

effectively reduce the size of test suites by 

selecting a subset of test cases that maintain or 

improve the overall coverage and fault detection 

capability. 

-Exploration of solution space: Genetic 

algorithms explore a diverse range of solutions, 

which can help identify trade-offs between test 

suite size reduction, coverage, and fault detection 

effectiveness. 

-Parameter sensitivity: The effectiveness of genetic 

algorithms heavily depends on the selection of appropriate 

algorithm parameters, such as population size, mutation 

rate, and crossover strategies. 

-Lack of guarantees: Genetic algorithms are heuristic 

approaches, meaning they do not provide guarantees of 

finding the global optimal solution. 

Nour 

Chetouane 

et al (2020) 

[19] 

-Improved efficiency: By eliminating redundant 

or overlapping test cases, k-means clustering can 

streamline the testing process, making it more 

efficient and cost-effective. 

-Enhanced maintainability: A reduced test suite 

can be easier to maintain since there are fewer 

test cases to update and monitor when changes 

are made to the software system. 

-Inaccurate clustering: The effectiveness of k-means 

clustering heavily relies on the quality of the input data and 

the appropriate selection of parameters. If the clustering 

algorithm fails to produce accurate clusters, the resulting 

test suite reduction may not be optimal. 

-Limited applicability: The suitability of k-means 

clustering for test suite reduction depends on the 

characteristics of the software system and the nature of the 
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3.1 Proposed Approach 
 

The time required for regression testing is directly proportional to the quantity of test cases. As the number 

of test cases increases, the regression testing process takes longer. This occurs because each test case 

necessitates execution and analysis to ensure that the software modifications do not negatively impact the 

existing functionality. To efficiently manage the regression testing process, it is essential to minimize the 

number of test cases and concentrate on the most critical ones. This approach aims to curtail the total duration 

of regression testing by applying test suite reduction techniques to diminish the size of the test suite that is 

executed, coupled with parallel automation for simultaneous test suite execution to optimize time savings. 

Figure 1 illustrates the framework of the proposed approach, which is implemented as follows: 

 

 

 

 

 

 

 

 

test cases. It may not be effective in all scenarios or for all 

types of software applications. 

C. Xia et al. 

(2021) [20] 

-Efficient Test Execution: The use of 

evolutionary clustering can help in reducing the 

size of the test suite, resulting in faster test 

execution times. 

- Resource Savings: Reduced test suite size 

means less resource utilization in terms of time 

and computational power, which can lead to cost 

savings, especially for large projects or continuous 

integration environments. 

- Loss of Coverage: Reducing the test suite size could 

result in reduced coverage of certain areas, which might 

lead to undetected bugs. 

-Accuracy of Clustering: The accuracy of the clustering 

algorithm is crucial. If the algorithm doesn't cluster tests 

effectively, it might lead to retaining non-representative 

tests and losing valuable coverage. 

Chen-Hua 

Lee and 

Chin-Yu 

Huang 

(2022) [21] 

-Improved efficiency: By eliminating redundant 

test cases, cluster-based approaches can enhance 

testing efficiency, allowing more focus on critical 

or unique test scenarios. 

-Enhanced fault detection: Clustering 

techniques can help identify groups of test cases 

that exhibit similar behavior. This can improve 

fault detection capabilities by ensuring that 

different aspects of the software system are 

adequately tested. 

-Sensitivity to clustering parameters: The effectiveness 

of cluster-based approaches heavily depends on the 

selection of appropriate clustering parameters.  

-Generalizability: The success of cluster-based 

approaches for test suite reduction may vary depending 

on the characteristics of the software system under 

consideration. What works well for one system might not 

necessarily generalize to others. 

S. M. Nagy 

et al. (2023) 

[22] 

-Effective Test Suite Reduction: Combining 

clustering and genetic algorithms could potentially 

lead to a more efficient reduction of the test suite 

size, resulting in quicker test execution times. 

-Improved Code Coverage: By considering both 

clustering and genetic algorithms, the approach 

might be capable of achieving a higher code 

coverage rate. 

-Loss of Test Diversity: The reduction process might 

inadvertently result in the removal of diverse and edge 

cases, potentially missing critical defects that might only 

be revealed in certain scenarios. 

- Algorithm Tuning: Properly configuring the parameters 

of both the clustering and genetic algorithms is crucial for 

obtaining optimal results. This might require expertise and 

time-consuming parameter tuning. 
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Figure 1: The framework of the proposed approach for decreasing the execution time. 

 

3.1.1 Test Suite Reduction 

 

A. Determine the optimal number of clusters using the silhouette analysis method [23][24]. This method 

helps in identifying the most suitable number of clusters for a given test suite. Calculating the 

silhouette value for different values of k (the number of clusters) involves determining the optimal 

value of k that results in the highest average silhouette value across all data points. This is the value 

of k that provides the best balance between intra-cluster similarity and inter-cluster dissimilarity. 

 

The silhouette value for each data point is calculated as follows: 

1. Compute the mean distance between the data point and all other points within the same 

cluster. This is referred to as the intra-cluster distance (a) 

2. Determine the mean distance between the data point and all the points within the nearest 

cluster. This is known as the nearest-cluster distance (b). 

3. Calculate the silhouette value for the data point as (b – a) / max (a, b). 

 

The silhouette value falls within the -1 to +1 range. A score of +1 suggests that the data point is an 

excellent match within its current cluster, while a score of -1 implies that the data point might be 

better placed in a different cluster. Scores near zero indicate that the data point is within a cluster that 

lacks clear separation from its closest neighboring cluster. 

 

B. Grouping the test cases in clusters using K-Medoids [25][26] is a clustering algorithm that is a 

development of the well-known K-Means algorithm. Instead of employing the mean (average) of the 

data points within a cluster as the central point, K-Medoids utilizes the medoid, which represents the 

data point most centrally positioned within the cluster. The medoid is the data point that minimizes 

the overall dissimilarity to all other points within the cluster. 

 

The K-Medoids algorithm follows these steps: 

1. Initialization: Start by randomly choosing K data points from the dataset to serve as the initial 

medoids. 
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2. Assignment: Allocate each data point to the closest medoid, determined by a selected 

dissimilarity measure like Euclidean distance or Manhattan distance. 

3. Update: For each cluster, try swapping the medoid with each non-medoid point and calculate 

the total dissimilarity of the cluster. Select the point that results in the lowest total dissimilarity 

as the new medoid for that cluster. 

4. Repeat steps 2 and 3 until convergence: Repeat the assignment and update steps until the 

medoids remain constant or a predefined maximum number of iterations is attained. 

5. Output: The algorithm terminates, and the final clustering result is obtained with the medoids 

representing the centers of the clusters. 

 

K-Medoids has several advantages over K-Means. It is more robust to outliers since it uses actual 

data points as medoids instead of means, which are sensitive to extreme values. Additionally, K-

Medoids can handle non-Euclidean dissimilarity measures, making it applicable to a wider range of 

data types. 

 

However, one drawback of K-Medoids is that it can be computationally expensive, especially for 

large datasets, as it requires calculating dissimilarities between each data point and each medoid. 

 

C. Decrease the number of test cases within each cluster employing NSGA-II [20]. Non-Dominated 

Sorting Genetic Algorithm (NSGA) [20] is a multi-objective optimization algorithm that is widely 

used in engineering and scientific applications. It uses a non-dominated sorting technique to identify 

the best solutions in a population, making it an efficient and effective approach for solving complex 

optimization problems with multiple objectives. NSGA is a multi-objective optimization algorithm 

that operates on the foundation of Pareto optimality. NSGA was first introduced by Kalyanmoy Deb 

in 2002 [27] and has since become a popular choice for solving complex engineering and scientific 

problems with multiple competing objectives. NSGA functions by segmenting the search space into 

multiple fronts, with each front comprising solutions that are not dominated by any other solution 

concerning the specified objectives. The algorithm then uses a combination of selection, crossover, 

and mutation operators to evolve the population towards the Pareto frontier, which represents the set 

of optimal solutions that cannot be improved in one objective without worsening at least one other 

objective. NSGA has been widely used in various fields such as civil engineering, mechanical 

engineering, environmental sciences, and finance, among others. NSGA is a powerful optimization 

algorithm that has proven its efficiency in solving problems with multiple competing objectives. The 

ability of NSGA to efficiently generate a varied range of optimal solutions along the Pareto frontier 

has made it a popular choice for multi-objective optimization problems.  

 

3.1.2 Parallel Automation Execution 

 

Parallel automation testing [12][13] is a technique that allows multiple test cases to be executed 

simultaneously on different machines or devices, reducing the overall testing time. This can be achieved by 

applying parallel automation execution to the reduced test suite using Selenium Docker [12]. This approach 

can significantly reduce the time required to complete testing and improve the overall efficiency of software 

testing, especially in large-scale projects with complex functionalities. 
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A. Selenium Docker 

 

Selenium Docker [12] is a combination of the Selenium testing framework and Docker, a platform for 

containerization. The integration of these two technologies allows for the efficient and scalable 

execution of Selenium tests within isolated containers. Selenium Docker combines the capabilities of 

Selenium's web automation with Docker's containerization benefits, making it a powerful approach for 

efficient and scalable web application testing. Figure 2 shows the Selenium grid setup with Docker 

containers. 

 

Selenium is a popular open-source testing framework primarily used for automating web applications. 

It provides a way to automate browser actions, interact with web elements, and perform various testing 

tasks, such as functional testing, regression testing, and load testing, across different web browsers. 

 

Docker, on the other hand, is a containerization platform that allows you to package applications and 

their dependencies into lightweight, isolated containers. Docker containers encapsulate the testing 

environment, including the specific browser version, operating system, and other dependencies required 

for your tests. 

 

To use Selenium with Docker, a Docker image should be created that includes the necessary browser 

drivers (like ChromeDriver or FirefoxDriver). Then, Docker commands or Docker-compose is used to 

create and manage containers based on this image. The containers execute the Selenium tests in a 

controlled and consistent environment. 

 

 

Figure 2: Selenium grid setup with Docker containers. 

 

B. Dispatcher 

 

A "dispatcher" [12] is a component or system that manages the distribution and coordination of test 

execution across multiple testing resources in a parallel or distributed testing environment. The purpose 

of a dispatcher is to optimize the use of available resources, such as machines, devices, or virtual 
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environments, to execute tests simultaneously, thereby accelerating the testing process. In conclusion, 

dispatchers play a pivotal role in the efficient execution of parallel software testing. They streamline 

resource allocation, manage test distribution, and facilitate faster test execution. Figure 3 shows the 

Selenium architecture with the dispatcher. 

 

 

Figure 3: Selenium architecture with dispatcher [12]. 

 

3.2 Installation and Configuration 
 

The experiments took place on a system powered by an Intel® Core™ i7-9700 CPU operating at 3.00GHz, 

with 16.0 GB of RAM, running on the Windows 10 Pro operating system. The proposed approach consists of 

using the Clustering technique and genetic algorithm to reduce the test suite size and then apply the parallel 

automation execution for the test cases. Test suite reduction techniques were implemented using MATLAB 

(R2021a_v9.10.0) and parallel automation execution was implemented using Selenium Docker. In the first 

experiment, a set of seven software programs from Siemens, initially developed by Tom Ostrand and his 

research team at Siemens Corporate Research [28], along with a program from the European Space Agency, 

were utilized in experiments. These benchmark programs are commonly employed in regression testing for 

comparison purposes. The Software-artifact Infrastructure Repository (SIR), which houses these programs 

and their corresponding test suites, served as the source for these resources [29]. Table 2 presents a description 

of the programs used for the first experiment. In the second experiment, the system under test used is a flight 

booking website [30]. A set of around 500 test cases were developed with the assumption that they have no 

interdependencies.  

 

3.3 Evaluation Metrics 

 

To assess the efficiency of the suggested approach, various metrics [22] are employed to gauge its 

effectiveness. The metrics encompass reduction rate, code coverage, and execution time, providing a 

comprehensive evaluation of the proposed approach. The evaluation metrics are shown in Table 3.  
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Table 2 Explanation of Programs. 
 

 

 

 

 

 

 
Table 3 Evaluation Metrics 

. 

Metrics Formula Evaluation Focus 

Test Suite 

Reduction 

|𝑻𝒆𝒔𝒕𝑺𝒖𝒊𝒕𝒆| − |𝑻𝒆𝒔𝒕𝑺𝒖𝒊𝒕𝒆𝑹𝒆𝒅|

|𝑻𝒆𝒔𝒕𝑺𝒖𝒊𝒕𝒆|
× 𝟏𝟎𝟎% 

The reduction rate measures the effectiveness of the 

approach in minimizing the test suite. TestSuite refers to the 

number of test cases in the original test suite, while 

TestSuiteRed refers to the number of test cases in the 

reduced test suite. 

Test Suite Code 

Coverage 

|𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆𝒄𝒐𝒅𝒆|

|𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏𝒄𝒂𝒔𝒆|
× 𝟏𝟎𝟎% 

The code coverage measures the effectiveness of the 

minimized test suite in terms of covering the code. 

Coveragecode refers to the amount of code covered by these 

executed test cases while Executioncase refers to the 

number of test cases that have been executed. 

Execution time 
𝑶𝒑𝒕𝒊𝒎𝒂𝒍𝑲𝑻𝒊𝒎𝒆 + 𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝑻𝒊𝒎𝒆
+ 𝑬𝒗𝒂𝒍𝒖𝒕𝒊𝒐𝒏𝑻𝒊𝒎𝒆 

The execution time measures the time taken by the 

approach to generate the minimized test suite. 

OptimalKTime refers to the time taken to identify the 

optimal k, ClusterTime refers to the time required for 

clustering the test suite, and EvolutionTime refers to the 

time needed for evolving the test suite. 

 

4. Results 

 

4.1 Experimental Results of Test Suite Reduction Proposed Approach 

 

The experiment aimed to compare the newly proposed approach with a previously published one [22] to 

determine which was more effective in reducing the test suite size, enhancing code coverage, and reducing 

execution time. The suggested approach was assessed alongside the previous approach, as both aimed to 

reduce the number of tests in regression testing. The suggested approach employed the K-medoids clustering 

algorithm, grouping test cases based on their similarity. To optimize this approach, the ideal number of 

clusters, denoted as 'k', was determined initially using the silhouette analysis method. Subsequently, an NSGA-

II was employed to reduce the number of test cases within each cluster while considering the code coverage. 

To ensure the reliability of the results, each tested program underwent 30 executions, and the mean value of 

the experimental data was utilized. The comparison between the two approaches focused on three key factors: 

test suite reduction, test suite code coverage, and execution time. 

Program Name Program Description Lines of Code Test Cases 

Totinfo Information Measure 565 1052 

Tcas Altitude Separation 173 1608 

Schedule Priority Scheduler 412 2650 

schedule2 Priority Scheduler 374 2710 

print_tokens Lexical analyzer 726 4130 

print_tokens2 Lexical analyzer 570 4115 

Replace Pattern Replace 564 5542 

Space European Space Agency Program 6199 13585 
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A. Test suite reduction: 

 

To evaluate the effectiveness of the suggested test suite reduction approach, the reduction rate was calculated 

for each approach using various programs. The results are presented in Table 4. The previously published 

approach achieved an average test suite reduction rate of 47.82%, whereas the proposed approach attained a 

rate of 48.64%. Consequently, the proposed approach demonstrated superior results compared to the other 

approach. As depicted in Figure 4, presented as a boxplot featuring five key parameters - minimum, median, 

maximum, first quartile Q1, and third quartile Q3 - the findings consistently show that the proposed approach 

outperforms all other approaches in terms of test suite reduction across all programs. 
 

Table 4 Comparison between the Proposed Approach and Previous Approach [22] based on Test Suite Reduction. 
 

Program Name/ SUT 
Test Suite Reduction 

Proposed Approach Previous Approach [22] 

totinfo 40.9% 40.2% 

tcas 48.4% 47.8% 

schedule 51.8% 51.1% 

schedule2 55.3% 54.4% 

print_tokens 48.2% 47.9% 

Print_tokens2 46.6% 45.7% 

replace 54.1% 52.8% 

space 43.8% 42.5% 

mean 48.64% 47.82% 

 

 

Figure 4: Proposed Approach vs Previous Approach [22] based on Test Suite Reduction. 
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B. Test suite code coverage: 

 

The effectiveness of the reduced test suite concerning code coverage was assessed across various programs 

for both approaches. This evaluation involved measuring how well the test suite covered the code, with the 

calculation of the average code coverage. Average code coverage signifies the average number of lines of 

code that each test case, on average, covers. A higher average code coverage score suggests greater efficiency 

of the approach, as it indicates that each test case covers more code lines on average. Table 5 presents the 

findings. The previously published approach achieved an average test suite code coverage of 41.81%, whereas 

the proposed approach recorded a slightly lower coverage of 40.53%. Therefore, the proposed approach 

yielded a lower result compared to the previous approach in terms of code coverage. According to the findings, 

the proposed approach consistently demonstrated reduced code coverage within the test suite across all 

programs, as illustrated in Figure 5 through a boxplot representation. This signifies that the proposed approach 

succeeded in significantly reducing the size of the test suite but led to a decreased code coverage rate across 

the eight programs. In conclusion, while the proposed approach successfully reduced the test suite size, it came 

at the cost of lower code coverage across the tested programs. 

 
Table 5 Comparison between the Proposed Approach and Previous Approach [22] based on Test Suite Code 

 

. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Proposed Approach vs Previous Approach [22] based on Test Suite Code Coverage. 

Program Name/ SUT 
Test Suite Code Coverage 

Proposed Approach Previous Approach [22] 

totinfo 86.8% 88.5% 

tcas 22.3% 23.8% 

schedule 31.7% 32.6% 

schedule2 29.1% 29.9% 

print_tokens 32.6% 34.3% 

Print_tokens2 24.4% 25.8% 

replace 22.5% 23.4% 

space 74.8% 76.2% 

mean 40.53% 41.81% 
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C. Execution time: 

 

To determine how effectively the reduced test suite affected execution time, the execution times for both the 

proposed approach and the previously published one were calculated for all the programs. Table 6 displays 

the findings. The proposed approach has the quickest average execution time. It recorded the lowest time in 

all programs. Figure 6 illustrates the outcomes for the two approaches as a boxplot, demonstrating that the 

proposed approach was the quickest and provided the highest test suite reduction but lower code coverage 

rates. 

 
Table 6 Comparison between the Proposed Approach and Previous Approach [22] based on Execution Time. 

 

Program Name/ SUT 
Execution Time (seconds) 

Proposed Approach Previous Approach [22] 

totinfo 5.9 6.2 

tcas 12.5 14.1 

schedule 11.3 12.5 

schedule2 14.1 15.6 

print_tokens 141.7 145.6 

Print_tokens2 132.6 134.9 

replace 304.2 306.3 

space 1348.4 1385.7 

mean 246.34 252.61 

 

 

Figure 6: Proposed Approach vs Previous Approach [22] based on Execution Time. 
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4.2 Experimental Results of Parallel Execution of Test Suite Reduction Approach 

 

The primary aim of the experiment was to decrease the overall testing duration. Based on the initial 

experiment, it can be deduced that the previously published approach [22] effectively reduced the size of 

extensive test suites while preserving code coverage. So, in this experiment, two methods were used to achieve 

the shortest possible execution time. Firstly, the test suite reduction technique used consists of K-means++ 

and NSGA-II. Secondly, parallel automation execution is applied using Selenium Docker and dispatcher. 

Selenium Docker is a combination of the Selenium automation framework and Docker, a containerization 

platform. It allows to run Selenium tests in isolated and reproducible environments using Docker 

containers. By creating a Selenium Grid Docker Network consisting of a hub and nodes to distribute the 

browser automation tasks. Each node can run on a separate machine. The main challenge lies in the efficient 

allocation of test cases among nodes within Docker containers to expedite execution. This is tackled by 

implementing a dispatcher that is tasked with instantly distributing completed test cases to each node, thereby 

preventing nodes from remaining idle and saving time. 

 

In the study presented in [12], parallel execution with a dispatcher was employed to decrease the execution 

time by 34%. The suggested approach managed to reduce the test suite from 500 to 176 test cases. As indicated 

in the results presented in Table 7, the proposed approach achieved a 75% reduction in execution time 

compared to the parallel execution with a dispatcher described in [12]. So, in conclusion, the proposed 

approach achieved a higher result than other approaches. 

Table 7 Comparison between the Parallel execution without a dispatcher [12], Parallel execution with a dispatcher [12], and 

Proposed Approach based on the execution time. 
 

Approaches 
Parallel execution without 

dispatcher [12] 

Parallel execution with 

dispatcher [12] 

Proposed approach (test suite 

reduction and parallel 

execution with dispatcher) 

Execution Time 1920s (32min) 1260s (21 min) 321s (5.35 min) 

 

5. Conclusion 

 

Regression testing is a necessary task in software engineering. It is required whenever a new version of an 

existing system is released, and changes are made to any existing components. Regression testing involves 

continually running the same test cases on the program that has not been modified. This spending of time, 

resources, and money is overhead. This paper conducted two experiments. The first experiment aimed to 

compare two approaches for reducing the test suite size, and the outcome indicated that the previously 

published approach performed the best in terms of code coverage rate. The second experiment was conducted 

to reduce the overall duration of regression testing through a two-step process. The initial step involved 

reducing the test suite's size by categorizing test cases into groups based on their similarity, achieved using 

the K-means++ clustering algorithm. To optimize the performance of the K-means++ method, the ideal 

number of clusters, denoted as 'k,' was determined using the silhouette analysis method. Subsequently, the size 

of each cluster was further reduced using a non-dominated sorting genetic algorithm (NSGA-II). The second 

step consisted of implementing parallel automation execution for the downsized test suite, employing 
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Selenium Docker with a dispatcher. The outcome demonstrated that the proposed approach could reduce 

execution time by 75%. In the future, there are plans to extend and apply the proposed approach to large-scale 

projects in diverse domains for further experimentation. 
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