
IJICIS, Vol.23, No.4, 33-49

DOI: 10.21608/ijicis.2023.243991.1303

*Corresponding Author: Sarah M.Nagy

Information System Department, Faculty of Computer and Information Science, Ain Shams University, Cairo, Egypt

Email address: Sara.nagy@cis.asu.edu.eg

International Journal of Intelligent

Computing and Information Sciences

ENHANCED REGRESSION TESTING EXECUTION PROCESS USING TEST

SUITE REDUCTION TECHNIQUES AND PARALLEL EXECUTION

Sarah M.Nagy*

Information System Department,

 Faculty of Computer and

Information Science, Ain Shams

University,

Cairo, Egypt

Sara.nagy@cis.asu.edu.eg

Huda A.Maghawry

Information System Department,

 Faculty of Computer and

Information Science, Ain Shams

University,

Cairo, Egypt

Huda_amin@cis.asu.edu.eg

Nagwa L.Badr

Information System Department,

 Faculty of Computer and

Information Science, Ain Shams

University,

Cairo, Egypt

Nagwabadr@cis.asu.edu.eg

Received 2023-10-22; Revised 2023-11-06; Accepted 2023-12-05

Abstract: Regression testing is a vital category of software testing. Regression testing is done to make sure

that the changed code does not have any unexpected negative effects on the software. Regression testing,

despite its significance in ensuring software quality, can be a costly phase in the software testing process.

Typically, the more tests there are, the longer it takes for them to run. As a result, the price of regression

testing rises with the quantity of tests. So, the objective is to reduce the execution time of the regression

testing by removing test cases that are redundant or have lower importance in terms of their capacity to

uncover faults. The primary aim of test case reduction is to decrease the number of test cases, which, in turn,

lowers the time and expenses associated with their execution. This paper presents an approach to minimize

the execution time of regression testing while preserving code coverage, achieved through the utilization of

test suite reduction techniques and parallel automation execution. The employed test suite reduction

approach involves utilizing a clustering technique and a genetic algorithm. The resulting reduced test suite

is then executed in parallel to achieve the shortest possible execution time. The results demonstrate that the

proposed approach can cut down execution time by 75%.

Keywords: Regression Testing, Test Suite Reduction, Clustering, Genetic Algorithm, Parallel Execution.

1. Introduction

Regression testing [1][2] is a form of software testing focused on identifying software defects. It is performed

to ensure that new or modified software components or products still work as expected and that they do not

https://ijicis.journals.ekb.eg/

34 Sarah M.Nag et al.

regress in behaviour. Regression testing can be performed manually or by an automated system. Automated

regression testing [3][4] is accomplished using scripts that are created by either a human or another program.

The scripts are executed on a platform that allows them to interact with the application's user interface and/or

integrate with other systems in place. Manual regression tests are typically created as lists of steps for a tester

to perform, with input values and expected results. Regression tests are often classified into two categories:

functional and non-functional. Functional regression testing [5] ensures that the application still performs

application-related functions after a code change, whereas non-functional regression testing ensures that the

application continues to meet all its quality attributes such as scalability, performance, availability, and so on

after a code change.

Regression test suites can be expensive to maintain because they grow exponentially with every change. It is

important to keep the test suite small to avoid unnecessary maintenance costs and time. When bugs are

addressed, new features are introduced, or old features are removed, it becomes necessary for the tester to

update the existing test suite. This entails adding new test cases. However, it's important to note that the

existing test cases may lose their relevance as they may have been modified due to bug fixes. When new

features are introduced, the tester must incorporate new test cases, and when old features are removed, the

tester should eliminate test cases associated with the outdated features while also introducing new test cases

to ensure that the removal of old features doesn't impact the unaffected features. Yet, the actual challenge lies

in identifying a subset of test cases that are essential to verify the System Under Test (SUT). Techniques for

test case reduction offer the most cost-effective solution to this issue.

Regression testing's test suite reduction involves minimizing the number of test cases that need to be executed

during a regression testing cycle. The objective behind test suite reduction is to enhance the testing process by

pinpointing the smallest set of test cases that can offer the highest test coverage for the application being tested.

The primary motivation for test suite reduction is resource and time conservation, as executing a reduced test

suite demands less time and effort compared to running the entire test suite. By reducing the number of tests,

the testing process can achieve greater efficiency while still upholding the testing quality.

There exist multiple strategies for handling large test suites, such as:

1. Test Case Prioritization [6][7][8]: prioritize the tests based on their importance, impact, and risk, and

run the most critical tests first.

2. Test Case Selection [9]: Choose a subset of the test cases that delivers sufficient coverage and disregard

those that do not contribute significantly.

3. Test Case Minimization [10][11]: minimize the test suite by identifying redundant or irrelevant tests

within the suite.

Parallel automation testing [12][13] refers to the technique of running automated tests simultaneously on

multiple devices or environments. This approach allows for faster and more efficient testing, as tests can be

executed in parallel, reducing the overall testing time. Parallel automation testing can be done using various

tools and frameworks that support parallel execution of tests, such as Selenium Grid [14]. It also enables

testing teams to quickly identify issues across different platforms and environments, ensuring a more

comprehensive testing approach.

ENHANCED REGRESSION TESTING EXECUTION PROCESS USING TEST SUITE REDUCTION TECHNIQUES

AND PARALLEL EXECUTION

35

This paper introduces an improved approach for decreasing the total duration of regression testing. Section 2

contains a review of relevant literature. In Section 3, we will provide a detailed description of all the

techniques, testing technologies, and tools employed in the proposed approach's design and implementation.

The experimental findings will be deliberated in Section 4, and Section 5 will conclude the paper.

2. Literature Review

In the software testing field, the increasing complexity and size of modern software systems have created an

urgent need for efficient and effective testing approaches. Test suite reduction has emerged as a promising

strategy to tackle this challenge. The primary objective of test suite reduction is to minimize the size of the

test suite while retaining its ability to detect faults, thereby reducing the time and resources necessary for

testing. Table 1 outlines the advantages and disadvantages found in various literature sources when dealing

with extensive test suites.

In 2017 S. K. Harikarthik et al [15] presented an innovative approach for enhancing regression testing by

prioritizing test cases. This approach focuses on the selection of the most pertinent test cases from a test suite

to enhance testing efficiency. By combining artificial neural networks and a specialized optimization

algorithm, the proposed technique enhances the process of selecting tests for regression testing. The primary

emphasis of the paper is on attaining the best possible selection of test suites while integrating strategies for

prioritizing test cases. The result shows that the time and memory demands for test case prioritization are

lower in comparison to existing methods, and the results are highly accurate. The results illustrate that the

combined ANN-Whale method utilized in this research surpasses alternative classifiers, achieving

significantly elevated levels of accuracy.

In 2019 E. Cruciani et al [16] discussed scalable techniques for shrinking test suites while preserving fault

detection. It highlights methods suitable for large software systems, offering insights into efficient testing for

complex applications. The paper presents two novel techniques, FAST++ and FAST-CS, designed to

efficiently identify a subset of test cases for test case reduction. These approaches utilize intelligent heuristics

derived from the field of big data, providing different levels of precision and efficiency. The findings indicate

that these approaches achieve fault detection rates comparable to cutting-edge technologies while significantly

enhancing efficiency when applied to a real-world dataset comprising over 500,000 test cases.

In 2020 O. Ö. Özener and H. Sözer [17] introduced an innovative formulation for addressing the issue of

minimizing test suites with multiple criteria, employing integer linear programming. The work pinpointed

deficiencies in the existing formulations that could result in less-than-optimal solutions. The result shows that

employing a linear formulation yields superior outcomes compared to the current best method concerning the

identical objective function and criteria set. These criteria encompass statement coverage, the ability to detect

faults, and the time it takes for test execution. Furthermore, the linear formulation offers improved time

efficiency compared to non-linear approaches, enhancing scalability for more extensive problems.

In 2020 Carmen Coviello et al [18] presented GASSER (Genetic Algorithm for Test Suite Reduction), a novel

approach for Test Suite Reduction (TSR) that utilizes a multiobjective evolutionary algorithm called NSGA-

36 Sarah M.Nag et al.

II. GASSER achieves TSR by simultaneously maximizing statement coverage and the diversity of test cases

while minimizing the size of the resulting reduced test suites. The initial study demonstrates that GASSER

significantly reduces the size of test suites while having a minimal impact on fault-detection capability

compared to traditional approaches.

In 2020 Nour Chetouane et al [19] presented an algorithm for minimizing test suites through a machine

learning approach that integrates k-means clustering with binary search. The algorithm's concept involves

grouping closely related test cases and selecting a representative test case from each cluster to form the reduced

test suite. Binary search is employed to determine the optimal number of clusters, ensuring a reduction in the

test suite without significantly deviating from the coverage or mutation score achieved in the original test

suite. In all instances examined, the proposed algorithm managed to significantly decrease the number of test

cases, achieving a swift reduction, particularly when contrasted with alternative methods for reducing test

suites.

In 2021 C. Xia et al [20] introduced an evolutionary multi-objective optimization algorithm designed for

reducing test suites through clustering. They applied the K-means method to group related test cases into

clusters, followed by the application of the evolutionary algorithm to remove redundant test cases based on

the clustering results. The experiments conducted revealed that this approach achieved the highest test case

code coverage rate and demonstrated a missing failure rate on par with other existing techniques.

In 2022 Chen-Hua Lee and Chin-Yu Huang [21] the objective of this research paper is to decrease the size of

a test suite while maintaining or improving its ability to detect faults during regression testing. This is achieved

by utilizing cluster-based test suite reduction (CB-TSR) methods, which incorporate two testing criteria. Based

on the experimental findings, it is evident that the suggested CB-TSR methods offer reduced processing costs

and enhance effectiveness while maintaining or surpassing the fault detection capability of the reduced test

suite.

In 2023 S. M. Nagy et al [22] proposed an improved approach to optimize the regression testing process

through test suite reduction. Their proposed method employs the K-means++ clustering technique to group

test cases based on their similarities. Additionally, they utilize a multi-objective genetic algorithm to minimize

the test suite within each cluster while considering code coverage. The outcomes indicate that this proposed

approach outperforms previously established methods, both in terms of reducing the size of the test suite and

achieving a higher level of code coverage.

3. Design and Implementation

This section clarifies the methodology and technical framework employed to address the research objectives.

This segment provides a detailed description of how the research was carried out, encompassing the selection

of research methods and tools, as well as the overall structure of the study.

ENHANCED REGRESSION TESTING EXECUTION PROCESS USING TEST SUITE REDUCTION TECHNIQUES

AND PARALLEL EXECUTION

37

Table 1 Overview of approaches pros and cons.

Research Pros Cons

S. K.

Harikarthik

et al. (2017)

[15]

-Optimal Selection: The paper focuses on

optimal test suite selection and demonstrates its

practical relevance in real-world software testing

scenarios.

-Innovative Approach: The paper introduces a

novel technique by combining artificial neural

networks and a specialized optimization

algorithm, potentially contributing to

advancements in regression testing.

- Complexity: The utilization of advanced techniques like

artificial neural networks and optimization algorithms

might introduce complexity that could hinder practical

implementation.

-Resource and Skill Requirements: The implementation

of artificial neural networks and optimization algorithms

might demand specialized resources and expertise.

E. Cruciani

et al. (2019)

[16]

-Scalability Focus: The paper emphasizes

scalable techniques that address a critical need in

modern software development, where large-scale

systems are common.

-Efficiency Enhancement: The paper addresses a

critical need for optimizing testing processes,

offering approaches to reduce test suites while

maintaining effectiveness, thereby saving time

and resources.

-Adoption challenges: Implementing new test suite

reduction techniques may require changes to existing

testing processes, tools, and workflows. This can introduce

challenges related to adoption, integration, and training for

the testing team.

-Effectiveness trade-offs: While test suite reduction

techniques aim to reduce the size of the test suite, there is

a potential trade-off between test size reduction and fault

detection capability. Some techniques may inadvertently

remove critical test cases, leading to a potential loss in

defect identification.

O. Ö.

Özener and

H. Sözer

(2020) [17]

-Effective Formulation: The paper offers a well-

constructed formulation for addressing the multi-

criteria test suite minimization problem. This

highlights the author’s ability to provide a clear

and actionable approach to tackling the problem.

-Comprehensive Evaluation: The paper

evaluates its approach using multiple criteria,

including statement coverage, fault-revealing

capability, and test execution time. This

comprehensive evaluation provides a holistic view

of the proposed method's effectiveness.

-Complexity Concerns: The novelty of the proposed

approach might introduce additional complexity,

potentially making it difficult to implement and

comprehend, especially for those not well-versed in the

specific domain.

-Limited Applicability: Depending on the specifics of the

proposed formulation, it might only apply to a specific

subset of multi-criteria test suite minimization problems,

limiting its broader utility.

Carmen

Coviello et

al (2020)

[18]

-Test suite reduction: Genetic algorithms can

effectively reduce the size of test suites by

selecting a subset of test cases that maintain or

improve the overall coverage and fault detection

capability.

-Exploration of solution space: Genetic

algorithms explore a diverse range of solutions,

which can help identify trade-offs between test

suite size reduction, coverage, and fault detection

effectiveness.

-Parameter sensitivity: The effectiveness of genetic

algorithms heavily depends on the selection of appropriate

algorithm parameters, such as population size, mutation

rate, and crossover strategies.

-Lack of guarantees: Genetic algorithms are heuristic

approaches, meaning they do not provide guarantees of

finding the global optimal solution.

Nour

Chetouane

et al (2020)

[19]

-Improved efficiency: By eliminating redundant

or overlapping test cases, k-means clustering can

streamline the testing process, making it more

efficient and cost-effective.

-Enhanced maintainability: A reduced test suite

can be easier to maintain since there are fewer

test cases to update and monitor when changes

are made to the software system.

-Inaccurate clustering: The effectiveness of k-means

clustering heavily relies on the quality of the input data and

the appropriate selection of parameters. If the clustering

algorithm fails to produce accurate clusters, the resulting

test suite reduction may not be optimal.

-Limited applicability: The suitability of k-means

clustering for test suite reduction depends on the

characteristics of the software system and the nature of the

38 Sarah M.Nag et al.

3.1 Proposed Approach

The time required for regression testing is directly proportional to the quantity of test cases. As the number

of test cases increases, the regression testing process takes longer. This occurs because each test case

necessitates execution and analysis to ensure that the software modifications do not negatively impact the

existing functionality. To efficiently manage the regression testing process, it is essential to minimize the

number of test cases and concentrate on the most critical ones. This approach aims to curtail the total duration

of regression testing by applying test suite reduction techniques to diminish the size of the test suite that is

executed, coupled with parallel automation for simultaneous test suite execution to optimize time savings.

Figure 1 illustrates the framework of the proposed approach, which is implemented as follows:

test cases. It may not be effective in all scenarios or for all

types of software applications.

C. Xia et al.

(2021) [20]

-Efficient Test Execution: The use of

evolutionary clustering can help in reducing the

size of the test suite, resulting in faster test

execution times.

- Resource Savings: Reduced test suite size

means less resource utilization in terms of time

and computational power, which can lead to cost

savings, especially for large projects or continuous

integration environments.

- Loss of Coverage: Reducing the test suite size could

result in reduced coverage of certain areas, which might

lead to undetected bugs.

-Accuracy of Clustering: The accuracy of the clustering

algorithm is crucial. If the algorithm doesn't cluster tests

effectively, it might lead to retaining non-representative

tests and losing valuable coverage.

Chen-Hua

Lee and

Chin-Yu

Huang

(2022) [21]

-Improved efficiency: By eliminating redundant

test cases, cluster-based approaches can enhance

testing efficiency, allowing more focus on critical

or unique test scenarios.

-Enhanced fault detection: Clustering

techniques can help identify groups of test cases

that exhibit similar behavior. This can improve

fault detection capabilities by ensuring that

different aspects of the software system are

adequately tested.

-Sensitivity to clustering parameters: The effectiveness

of cluster-based approaches heavily depends on the

selection of appropriate clustering parameters.

-Generalizability: The success of cluster-based

approaches for test suite reduction may vary depending

on the characteristics of the software system under

consideration. What works well for one system might not

necessarily generalize to others.

S. M. Nagy

et al. (2023)

[22]

-Effective Test Suite Reduction: Combining

clustering and genetic algorithms could potentially

lead to a more efficient reduction of the test suite

size, resulting in quicker test execution times.

-Improved Code Coverage: By considering both

clustering and genetic algorithms, the approach

might be capable of achieving a higher code

coverage rate.

-Loss of Test Diversity: The reduction process might

inadvertently result in the removal of diverse and edge

cases, potentially missing critical defects that might only

be revealed in certain scenarios.

- Algorithm Tuning: Properly configuring the parameters

of both the clustering and genetic algorithms is crucial for

obtaining optimal results. This might require expertise and

time-consuming parameter tuning.

ENHANCED REGRESSION TESTING EXECUTION PROCESS USING TEST SUITE REDUCTION TECHNIQUES

AND PARALLEL EXECUTION

39

Figure 1: The framework of the proposed approach for decreasing the execution time.

3.1.1 Test Suite Reduction

A. Determine the optimal number of clusters using the silhouette analysis method [23][24]. This method

helps in identifying the most suitable number of clusters for a given test suite. Calculating the

silhouette value for different values of k (the number of clusters) involves determining the optimal

value of k that results in the highest average silhouette value across all data points. This is the value

of k that provides the best balance between intra-cluster similarity and inter-cluster dissimilarity.

The silhouette value for each data point is calculated as follows:

1. Compute the mean distance between the data point and all other points within the same

cluster. This is referred to as the intra-cluster distance (a)

2. Determine the mean distance between the data point and all the points within the nearest

cluster. This is known as the nearest-cluster distance (b).

3. Calculate the silhouette value for the data point as (b – a) / max (a, b).

The silhouette value falls within the -1 to +1 range. A score of +1 suggests that the data point is an

excellent match within its current cluster, while a score of -1 implies that the data point might be

better placed in a different cluster. Scores near zero indicate that the data point is within a cluster that

lacks clear separation from its closest neighboring cluster.

B. Grouping the test cases in clusters using K-Medoids [25][26] is a clustering algorithm that is a

development of the well-known K-Means algorithm. Instead of employing the mean (average) of the

data points within a cluster as the central point, K-Medoids utilizes the medoid, which represents the

data point most centrally positioned within the cluster. The medoid is the data point that minimizes

the overall dissimilarity to all other points within the cluster.

The K-Medoids algorithm follows these steps:

1. Initialization: Start by randomly choosing K data points from the dataset to serve as the initial

medoids.

40 Sarah M.Nag et al.

2. Assignment: Allocate each data point to the closest medoid, determined by a selected

dissimilarity measure like Euclidean distance or Manhattan distance.

3. Update: For each cluster, try swapping the medoid with each non-medoid point and calculate

the total dissimilarity of the cluster. Select the point that results in the lowest total dissimilarity

as the new medoid for that cluster.

4. Repeat steps 2 and 3 until convergence: Repeat the assignment and update steps until the

medoids remain constant or a predefined maximum number of iterations is attained.

5. Output: The algorithm terminates, and the final clustering result is obtained with the medoids

representing the centers of the clusters.

K-Medoids has several advantages over K-Means. It is more robust to outliers since it uses actual

data points as medoids instead of means, which are sensitive to extreme values. Additionally, K-

Medoids can handle non-Euclidean dissimilarity measures, making it applicable to a wider range of

data types.

However, one drawback of K-Medoids is that it can be computationally expensive, especially for

large datasets, as it requires calculating dissimilarities between each data point and each medoid.

C. Decrease the number of test cases within each cluster employing NSGA-II [20]. Non-Dominated

Sorting Genetic Algorithm (NSGA) [20] is a multi-objective optimization algorithm that is widely

used in engineering and scientific applications. It uses a non-dominated sorting technique to identify

the best solutions in a population, making it an efficient and effective approach for solving complex

optimization problems with multiple objectives. NSGA is a multi-objective optimization algorithm

that operates on the foundation of Pareto optimality. NSGA was first introduced by Kalyanmoy Deb

in 2002 [27] and has since become a popular choice for solving complex engineering and scientific

problems with multiple competing objectives. NSGA functions by segmenting the search space into

multiple fronts, with each front comprising solutions that are not dominated by any other solution

concerning the specified objectives. The algorithm then uses a combination of selection, crossover,

and mutation operators to evolve the population towards the Pareto frontier, which represents the set

of optimal solutions that cannot be improved in one objective without worsening at least one other

objective. NSGA has been widely used in various fields such as civil engineering, mechanical

engineering, environmental sciences, and finance, among others. NSGA is a powerful optimization

algorithm that has proven its efficiency in solving problems with multiple competing objectives. The

ability of NSGA to efficiently generate a varied range of optimal solutions along the Pareto frontier

has made it a popular choice for multi-objective optimization problems.

3.1.2 Parallel Automation Execution

Parallel automation testing [12][13] is a technique that allows multiple test cases to be executed

simultaneously on different machines or devices, reducing the overall testing time. This can be achieved by

applying parallel automation execution to the reduced test suite using Selenium Docker [12]. This approach

can significantly reduce the time required to complete testing and improve the overall efficiency of software

testing, especially in large-scale projects with complex functionalities.

ENHANCED REGRESSION TESTING EXECUTION PROCESS USING TEST SUITE REDUCTION TECHNIQUES

AND PARALLEL EXECUTION

41

A. Selenium Docker

Selenium Docker [12] is a combination of the Selenium testing framework and Docker, a platform for

containerization. The integration of these two technologies allows for the efficient and scalable

execution of Selenium tests within isolated containers. Selenium Docker combines the capabilities of

Selenium's web automation with Docker's containerization benefits, making it a powerful approach for

efficient and scalable web application testing. Figure 2 shows the Selenium grid setup with Docker

containers.

Selenium is a popular open-source testing framework primarily used for automating web applications.

It provides a way to automate browser actions, interact with web elements, and perform various testing

tasks, such as functional testing, regression testing, and load testing, across different web browsers.

Docker, on the other hand, is a containerization platform that allows you to package applications and

their dependencies into lightweight, isolated containers. Docker containers encapsulate the testing

environment, including the specific browser version, operating system, and other dependencies required

for your tests.

To use Selenium with Docker, a Docker image should be created that includes the necessary browser

drivers (like ChromeDriver or FirefoxDriver). Then, Docker commands or Docker-compose is used to

create and manage containers based on this image. The containers execute the Selenium tests in a

controlled and consistent environment.

Figure 2: Selenium grid setup with Docker containers.

B. Dispatcher

A "dispatcher" [12] is a component or system that manages the distribution and coordination of test

execution across multiple testing resources in a parallel or distributed testing environment. The purpose

of a dispatcher is to optimize the use of available resources, such as machines, devices, or virtual

42 Sarah M.Nag et al.

environments, to execute tests simultaneously, thereby accelerating the testing process. In conclusion,

dispatchers play a pivotal role in the efficient execution of parallel software testing. They streamline

resource allocation, manage test distribution, and facilitate faster test execution. Figure 3 shows the

Selenium architecture with the dispatcher.

Figure 3: Selenium architecture with dispatcher [12].

3.2 Installation and Configuration

The experiments took place on a system powered by an Intel® Core™ i7-9700 CPU operating at 3.00GHz,

with 16.0 GB of RAM, running on the Windows 10 Pro operating system. The proposed approach consists of

using the Clustering technique and genetic algorithm to reduce the test suite size and then apply the parallel

automation execution for the test cases. Test suite reduction techniques were implemented using MATLAB

(R2021a_v9.10.0) and parallel automation execution was implemented using Selenium Docker. In the first

experiment, a set of seven software programs from Siemens, initially developed by Tom Ostrand and his

research team at Siemens Corporate Research [28], along with a program from the European Space Agency,

were utilized in experiments. These benchmark programs are commonly employed in regression testing for

comparison purposes. The Software-artifact Infrastructure Repository (SIR), which houses these programs

and their corresponding test suites, served as the source for these resources [29]. Table 2 presents a description

of the programs used for the first experiment. In the second experiment, the system under test used is a flight

booking website [30]. A set of around 500 test cases were developed with the assumption that they have no

interdependencies.

3.3 Evaluation Metrics

To assess the efficiency of the suggested approach, various metrics [22] are employed to gauge its

effectiveness. The metrics encompass reduction rate, code coverage, and execution time, providing a

comprehensive evaluation of the proposed approach. The evaluation metrics are shown in Table 3.

ENHANCED REGRESSION TESTING EXECUTION PROCESS USING TEST SUITE REDUCTION TECHNIQUES

AND PARALLEL EXECUTION

43

Table 2 Explanation of Programs.

Table 3 Evaluation Metrics

.

Metrics Formula Evaluation Focus

Test Suite

Reduction

|𝑻𝒆𝒔𝒕𝑺𝒖𝒊𝒕𝒆| − |𝑻𝒆𝒔𝒕𝑺𝒖𝒊𝒕𝒆𝑹𝒆𝒅|

|𝑻𝒆𝒔𝒕𝑺𝒖𝒊𝒕𝒆|
× 𝟏𝟎𝟎%

The reduction rate measures the effectiveness of the

approach in minimizing the test suite. TestSuite refers to the

number of test cases in the original test suite, while

TestSuiteRed refers to the number of test cases in the

reduced test suite.

Test Suite Code

Coverage

|𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆𝒄𝒐𝒅𝒆|

|𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏𝒄𝒂𝒔𝒆|
× 𝟏𝟎𝟎%

The code coverage measures the effectiveness of the

minimized test suite in terms of covering the code.

Coveragecode refers to the amount of code covered by these

executed test cases while Executioncase refers to the

number of test cases that have been executed.

Execution time
𝑶𝒑𝒕𝒊𝒎𝒂𝒍𝑲𝑻𝒊𝒎𝒆 + 𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝑻𝒊𝒎𝒆
+ 𝑬𝒗𝒂𝒍𝒖𝒕𝒊𝒐𝒏𝑻𝒊𝒎𝒆

The execution time measures the time taken by the

approach to generate the minimized test suite.

OptimalKTime refers to the time taken to identify the

optimal k, ClusterTime refers to the time required for

clustering the test suite, and EvolutionTime refers to the

time needed for evolving the test suite.

4. Results

4.1 Experimental Results of Test Suite Reduction Proposed Approach

The experiment aimed to compare the newly proposed approach with a previously published one [22] to

determine which was more effective in reducing the test suite size, enhancing code coverage, and reducing

execution time. The suggested approach was assessed alongside the previous approach, as both aimed to

reduce the number of tests in regression testing. The suggested approach employed the K-medoids clustering

algorithm, grouping test cases based on their similarity. To optimize this approach, the ideal number of

clusters, denoted as 'k', was determined initially using the silhouette analysis method. Subsequently, an NSGA-

II was employed to reduce the number of test cases within each cluster while considering the code coverage.

To ensure the reliability of the results, each tested program underwent 30 executions, and the mean value of

the experimental data was utilized. The comparison between the two approaches focused on three key factors:

test suite reduction, test suite code coverage, and execution time.

Program Name Program Description Lines of Code Test Cases

Totinfo Information Measure 565 1052

Tcas Altitude Separation 173 1608

Schedule Priority Scheduler 412 2650

schedule2 Priority Scheduler 374 2710

print_tokens Lexical analyzer 726 4130

print_tokens2 Lexical analyzer 570 4115

Replace Pattern Replace 564 5542

Space European Space Agency Program 6199 13585

44 Sarah M.Nag et al.

A. Test suite reduction:

To evaluate the effectiveness of the suggested test suite reduction approach, the reduction rate was calculated

for each approach using various programs. The results are presented in Table 4. The previously published

approach achieved an average test suite reduction rate of 47.82%, whereas the proposed approach attained a

rate of 48.64%. Consequently, the proposed approach demonstrated superior results compared to the other

approach. As depicted in Figure 4, presented as a boxplot featuring five key parameters - minimum, median,

maximum, first quartile Q1, and third quartile Q3 - the findings consistently show that the proposed approach

outperforms all other approaches in terms of test suite reduction across all programs.

Table 4 Comparison between the Proposed Approach and Previous Approach [22] based on Test Suite Reduction.

Program Name/ SUT
Test Suite Reduction

Proposed Approach Previous Approach [22]

totinfo 40.9% 40.2%

tcas 48.4% 47.8%

schedule 51.8% 51.1%

schedule2 55.3% 54.4%

print_tokens 48.2% 47.9%

Print_tokens2 46.6% 45.7%

replace 54.1% 52.8%

space 43.8% 42.5%

mean 48.64% 47.82%

Figure 4: Proposed Approach vs Previous Approach [22] based on Test Suite Reduction.

ENHANCED REGRESSION TESTING EXECUTION PROCESS USING TEST SUITE REDUCTION TECHNIQUES

AND PARALLEL EXECUTION

45

B. Test suite code coverage:

The effectiveness of the reduced test suite concerning code coverage was assessed across various programs

for both approaches. This evaluation involved measuring how well the test suite covered the code, with the

calculation of the average code coverage. Average code coverage signifies the average number of lines of

code that each test case, on average, covers. A higher average code coverage score suggests greater efficiency

of the approach, as it indicates that each test case covers more code lines on average. Table 5 presents the

findings. The previously published approach achieved an average test suite code coverage of 41.81%, whereas

the proposed approach recorded a slightly lower coverage of 40.53%. Therefore, the proposed approach

yielded a lower result compared to the previous approach in terms of code coverage. According to the findings,

the proposed approach consistently demonstrated reduced code coverage within the test suite across all

programs, as illustrated in Figure 5 through a boxplot representation. This signifies that the proposed approach

succeeded in significantly reducing the size of the test suite but led to a decreased code coverage rate across

the eight programs. In conclusion, while the proposed approach successfully reduced the test suite size, it came

at the cost of lower code coverage across the tested programs.

Table 5 Comparison between the Proposed Approach and Previous Approach [22] based on Test Suite Code

.

Figure 5: Proposed Approach vs Previous Approach [22] based on Test Suite Code Coverage.

Program Name/ SUT
Test Suite Code Coverage

Proposed Approach Previous Approach [22]

totinfo 86.8% 88.5%

tcas 22.3% 23.8%

schedule 31.7% 32.6%

schedule2 29.1% 29.9%

print_tokens 32.6% 34.3%

Print_tokens2 24.4% 25.8%

replace 22.5% 23.4%

space 74.8% 76.2%

mean 40.53% 41.81%

46 Sarah M.Nag et al.

C. Execution time:

To determine how effectively the reduced test suite affected execution time, the execution times for both the

proposed approach and the previously published one were calculated for all the programs. Table 6 displays

the findings. The proposed approach has the quickest average execution time. It recorded the lowest time in

all programs. Figure 6 illustrates the outcomes for the two approaches as a boxplot, demonstrating that the

proposed approach was the quickest and provided the highest test suite reduction but lower code coverage

rates.

Table 6 Comparison between the Proposed Approach and Previous Approach [22] based on Execution Time.

Program Name/ SUT
Execution Time (seconds)

Proposed Approach Previous Approach [22]

totinfo 5.9 6.2

tcas 12.5 14.1

schedule 11.3 12.5

schedule2 14.1 15.6

print_tokens 141.7 145.6

Print_tokens2 132.6 134.9

replace 304.2 306.3

space 1348.4 1385.7

mean 246.34 252.61

Figure 6: Proposed Approach vs Previous Approach [22] based on Execution Time.

ENHANCED REGRESSION TESTING EXECUTION PROCESS USING TEST SUITE REDUCTION TECHNIQUES

AND PARALLEL EXECUTION

47

4.2 Experimental Results of Parallel Execution of Test Suite Reduction Approach

The primary aim of the experiment was to decrease the overall testing duration. Based on the initial

experiment, it can be deduced that the previously published approach [22] effectively reduced the size of

extensive test suites while preserving code coverage. So, in this experiment, two methods were used to achieve

the shortest possible execution time. Firstly, the test suite reduction technique used consists of K-means++

and NSGA-II. Secondly, parallel automation execution is applied using Selenium Docker and dispatcher.

Selenium Docker is a combination of the Selenium automation framework and Docker, a containerization

platform. It allows to run Selenium tests in isolated and reproducible environments using Docker

containers. By creating a Selenium Grid Docker Network consisting of a hub and nodes to distribute the

browser automation tasks. Each node can run on a separate machine. The main challenge lies in the efficient

allocation of test cases among nodes within Docker containers to expedite execution. This is tackled by

implementing a dispatcher that is tasked with instantly distributing completed test cases to each node, thereby

preventing nodes from remaining idle and saving time.

In the study presented in [12], parallel execution with a dispatcher was employed to decrease the execution

time by 34%. The suggested approach managed to reduce the test suite from 500 to 176 test cases. As indicated

in the results presented in Table 7, the proposed approach achieved a 75% reduction in execution time

compared to the parallel execution with a dispatcher described in [12]. So, in conclusion, the proposed

approach achieved a higher result than other approaches.

Table 7 Comparison between the Parallel execution without a dispatcher [12], Parallel execution with a dispatcher [12], and

Proposed Approach based on the execution time.

Approaches
Parallel execution without

dispatcher [12]

Parallel execution with

dispatcher [12]

Proposed approach (test suite

reduction and parallel

execution with dispatcher)

Execution Time 1920s (32min) 1260s (21 min) 321s (5.35 min)

5. Conclusion

Regression testing is a necessary task in software engineering. It is required whenever a new version of an

existing system is released, and changes are made to any existing components. Regression testing involves

continually running the same test cases on the program that has not been modified. This spending of time,

resources, and money is overhead. This paper conducted two experiments. The first experiment aimed to

compare two approaches for reducing the test suite size, and the outcome indicated that the previously

published approach performed the best in terms of code coverage rate. The second experiment was conducted

to reduce the overall duration of regression testing through a two-step process. The initial step involved

reducing the test suite's size by categorizing test cases into groups based on their similarity, achieved using

the K-means++ clustering algorithm. To optimize the performance of the K-means++ method, the ideal

number of clusters, denoted as 'k,' was determined using the silhouette analysis method. Subsequently, the size

of each cluster was further reduced using a non-dominated sorting genetic algorithm (NSGA-II). The second

step consisted of implementing parallel automation execution for the downsized test suite, employing

48 Sarah M.Nag et al.

Selenium Docker with a dispatcher. The outcome demonstrated that the proposed approach could reduce

execution time by 75%. In the future, there are plans to extend and apply the proposed approach to large-scale

projects in diverse domains for further experimentation.

References

1. R. H. Rosero, O. S. Gómez, and G. Rodríguez, “15 Years of Software Regression Testing Techniques -

A Survey,” International Journal of Software Engineering and Knowledge Engineering, vol. 26, no. 5.

World Scientific Publishing Co. Pte Ltd, pp. 675–689, Jun. 01, 2016. doi: 10.1142/S0218194016300013.

2. Rahmani, A., Ahmad, S., Jalil, I. E. A., & Herawan, A. P. A systematic literature review on regression

test case prioritization. International Journal of Advanced Computer Science and Applications, (2021).

3. Kaur, Palvinder. "Comparison of Automation Testing Tools for Regression Testing

website." International Journal of Innovative Science, Engineering & Technology 8 (2021): 259-265.

4. Bhagat, Babita, et al. "Software testing techniques & automation tools." Mukt Shabd Journal (2020).

5. Patel, Kenil Manishkumar, and Shahid Ali. "A study of regression testing for trade me website." CS &

IT Conference Proceedings. CS & IT Conference Proceedings. 2021.

6. M. Qasim, A. Bibi, S. J. Hussain, N. Z. Jhanjhi, M. Humayun, and N. U. Sama, “Test case prioritization

techniques in software regression testing: An overview,” International Journal of Advanced and Applied

Sciences, vol. 8, no. 5, pp. 107–121, May 2021, doi: 10.21833/ijaas.2021.05.012.

7. Bajaj and O. P. Sangwan, “A Systematic Literature Review of Test Case Prioritization Using Genetic

Algorithms,” IEEE Access, vol. 7, pp. 126355–126375,2019, doi: 10.1109/ACCESS.2019.2938260.

8. J. Chi et al., “Relation-based test case prioritization for regression testing,” Journal of Systems and

Software, vol. 163, May 2020, doi: 10.1016/j.jss.2020.110539.

9. R. Kazmi, D. N. A. Jawawi, R. Mohamad, and I. Ghani, “Effective regression test case selection: A

systematic literature review,” ACM Computing Surveys, vol. 50, no. 2. Association for Computing

Machinery, May 01, 2017. doi: 10.1145/3057269.

10. R. Wang, B. Qu, and Y. Lu, “Empirical study of the effects of different profiles on regression test case

reduction,” IET Software, vol. 9, no. 2, pp. 29–38, Apr. 2015, doi: 10.1049/iet-sen.2014.0008.

11. N. L. Hashim and Y. S. Dawood, “Test case minimization applying firefly algorithm,” Int J Adv Sci Eng

Inf Technol, vol. 8, no. 4–2, pp. 1777–1783, 2018, doi: 10.18517/ijaseit.8.4-2.6820.

12. Sarah M. Nagy, Huda A. Maghawry, and Nagwa L. Badr. "An Enhanced Parallel Automation Testing

Architecture for Test Case Execution." 2022 5th International Conference on Computing and Informatics

(ICCI). IEEE, 2022.

13. M. Alghamdi and F. E. Eassa, “Software Testing Techniques for Parallel Systems: A Survey,” 2019.

14. Wardhan, Harshita, and Suman Madan. "Study on Functioning of Selenium Testing Tool." International

Research Journal of Modernization in Engineering Technology and Science Www. Irjmets. Com@

International Research Journal of Modernization in Engineering (2021): 2582-5208.

15. S. K. Harikarthik, V. Palanisamy, and P. Ramanathan, “Optimal test suite selection in regression testing

with testcase prioritization using modified Ann and Whale optimization algorithm,” Cluster Computing,

Nov. 2017, doi: https://doi.org/10.1007/s10586-017-1401-7.

16. E. Cruciani, B. Miranda, R. Verdecchia, and A. Bertolino. "Scalable approaches for test suite

reduction." 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,

2019.

ENHANCED REGRESSION TESTING EXECUTION PROCESS USING TEST SUITE REDUCTION TECHNIQUES

AND PARALLEL EXECUTION

49

17. O. Ö. Özener and H. Sözer, “An effective formulation of the multi-criteria test suite minimization

problem,” Journal of Systems and Software, vol. 168, Oct. 2020, doi: 10.1016/j.jss.2020.110632.

18. Coviello, C., Romano, S., Scanniello, G., & Antoniol, G. "Gasser: Genetic algorithm for test suite

reduction." Proceedings of the 14th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM). 2020.

19. Chetouane, N., Wotawa, F., Felbinger, H., & Nica, M. "On using k-means clustering for test suite

reduction." 2020 IEEE International Conference on Software Testing, Verification and Validation

Workshops (ICSTW). IEEE, 2020.

20. C. Xia, Y. Zhang, and Z. Hui, “Test Suite Reduction via Evolutionary Clustering,” IEEE Access, vol. 9,

pp. 28111–28121, 2021, doi: 10.1109/ACCESS.2021.3058301.

21. Lee, Chen-Hua, and Chin-Yu Huang. "Applying Cluster-based Approach to Improve the Effectiveness

of Test Suite Reduction." International Journal of Performability Engineering 18.1 (2022).

22. Sarah M. Nagy, Huda A. Maghawry, and Nagwa L. Badr. " An Enhanced Approach for Test Suite

Reduction Using Clustering and Genetic Algorithms." Journal of Theoretical and Applied Information

Technology (Jatit). 2023.

23. Danny Matthew SAPUTRA, Daniel SAPUTRA, and Liniyanti D. OSWARI, “Effect of Distance Metrics

in Determining K-Value in KMeans Clustering Using Elbow and Silhouette Method,” Proceedings of the

Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 2019),

vol. 172, 2020.

24. K. R. Shahapure and C. Nicholas, “Cluster quality analysis using silhouette score,” in Proceedings - 2020

IEEE 7th International Conference on Data Science and Advanced Analytics, DSAA 2020, Oct. 2020,

pp. 747–748. doi: 10.1109/DSAA49011.2020.00096.

25. F. Liu, J. Zhang, and E.-Z. Zhu, “Test-Suite Reduction Based on K-Medoids Clustering Algorithm,”

IEEE Xplore, Oct. 01, 2017. https://ieeexplore.ieee.org/document/8250357 (accessed Mar. 22, 2023).

26. Chen, J., Gu, Y., Cai, S., Chen, H., & Chen, J. A novel test case prioritization approach for black‐box

testing based on K‐medoids clustering. Journal of Software: Evolution and Process, e2565. (2023).

27. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm:

NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002, doi:

https://doi.org/10.1109/4235.996017.

28. “Software-artifact Infrastructure Repository.” https://sir.csc.ncsu.edu/portal/index.php (accessed Dec.

10, 2022).

29. J. L. Min, N. Rajabi, and A. Rahmani, “Comprehensive study of SIR: Leading SUT repository for

software testing,” in Journal of Physics: Conference Series, Apr. 2021, vol. 1869, no. 1. doi:

10.1088/1742-6596/1869/1/012072.

30. “Dummy ticket generator - Get the PDF now and save your time.” https://dummyticket.flights/ (accessed

Feb. 07, 2022).

https://doi.org/10.1109/4235.996017

