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Abstract: A crucial field in software development and testing is Software Defect Prediction (SDP) 

because the quality, dependability, efficiency, and cost of the software are all improved by forecasting 

software defects at an earlier stage. Many existing models predict defects to facilitate software testing 

process for testers. A comprehensive review of these models from different perspectives is crucial to help 

new researchers enter this field and learn about its latest developments. Algorithms, method types, 

datasets, and tools were the only perspectives discussed in the current literature. A comprehensive study 

that takes into account a wide spectrum of viewpoints hasn't yet been published. Examining the 

development and advancement of SDP-related studies is the goal of this literature review. It provides a 

comprehensive and updated state-of-the-art that satisfies all stated criteria. Out of 591 papers retrieved 

from 6 reputable databases, 73 papers were eligible for analysis. This review addresses relevant research 

questions regarding techniques & method types, data details, tools, code syntax, semantics, structural 

and domain information. Motivation to conduct this comprehensive review is to equip the readers with 

the necessary information and keep them informed about the software defect prediction domain. 

 

Keywords: Software Defect Prediction, Software testing, Solve class imbalance issue, Feature selection, 

Machine learning. 

 

 

1. Introduction 

 

With the tremendous technological development, applications usage has become inevitable. 

Unfortunately, the larger number of applications, more issues have been detected. Predicting these issues 

at an early stage is important because not all application fields can tolerate the presence of issues in their 

live applications. For example, the presence of issues in applications related to the medical field may lead 

to deaths and the presence of issues in applications related to the space field may lead to a national disaster. 

 

Programmers employ a wide range of tools during the software development process, such as task 

management, bug tracking, and version control systems. For their usage, there are various open-source 
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and commercial software solutions. In addition, several online services are developed to satisfy these 

requirements [1]. 

 

One of the main difficulties in programming language research and software development is prediction 

of defects, a crucial step in raising the quality and dependability of software. Finding flawed source code 

with great accuracy is a significant issue in this domain. A lot of methods have been offered throughout 

the years to the challenging problem of creating defect prediction models. [2]. 

 

Early reviews of Software Defect Prediction in the literature were constrained to debates on SDP from a 

dataset perspective, an algorithmic perspective, or a method type perspective. To the authors' knowledge, 

a thorough study that addresses several perspectives has not yet been published. In this paper, an in-depth 

review is proposed with comprehensive comparison on cornerstone perspectives, which include:  recency, 

techniques and method types, data details, tools, code syntax, semantics, structural and domain 

information. This paper includes a recent and extensive review of the studies associated with SDP that 

combines all criteria mentioned above to serve as guidance for researchers toward this field of study. 

Systematically examining 73 papers, this review addresses the following research questions: 

 

• Q1: Is SDP a hot research field? 

• Q2: What is the most widespread learning field, algorithms, metrics, and method types in SDP? 

• Q3: What are the most common data sources, datasets distributions and used languages in SDP? 

• Q4: What are the dominant tools used in SDP field? 

• Q5: How popular are code syntax, semantics, structural and domain information? 

 

The structure of this review is as follows. Section 2 shows the major differences between our paper and 

other review papers. Section 3 explains the review methodology and inclusion/exclusion criteria. Section 

4 presents details on the included papers. Section 5 elaborates on answers to the motivating research 

questions. Finally, section 6 concludes the review. 
  

2. Related Work 

 

This section covers other recent review papers in the Software Defect Prediction field.  

 

The authors of [3] compared the effectiveness of data mining, machine learning, and deep learning 

techniques in order to predict both cross-project and within-project defects. They looked at the many 

kinds of empirical comparison and validation measures. They emphasized the application of instance 

filtering and attribute selection during dataset pre-processing to get better outcomes. They investigated 

the most widely used datasets and comparison standards for SDP. They chose 68 primary research papers, 

summarizing their characteristics based on datasets, methods, and performance metrics. They evaluated 

the effectiveness of models for predicting software defects using data mining, machine learning, and deep 

learning techniques.  

 

The authors of [4] discussed and compared several research studies and systems that use Logistic 

Regression. They identified and categorized measuring techniques, including metrics, features, 

parameters, classifiers, accuracy, and data sets. Additionally, to show how effective their approach is, 

their obstacles, risks, and limitations were listed. Next, this review-based study made distinctions between 

several existing systems based on six fundamental measurement criteria and statistically analyzed them. 
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It also illustrated the difficulties associated with current methods, highlighting the need for an autonomous 

and successful defect-based prediction system built on a foundation of classifiers. 

 

A systematic literature review was conducted by the authors of [5] to assess the use of machine learning 

for predicting mobile application defects. In order to address nine questions, they identified 47 

publications from scientific databases that concentrated on mobile defect prediction models and evaluated 

them in a variety of ways. Publications that did not present any empirical findings and were not directly 

relevant to the creation of the mobile defect prediction model were removed. They found problems and 

gaps in the literature and proposed fixes. According to datasets, platforms, machine learning algorithms, 

machine learning types, validation approaches, evaluation metrics, software metrics, the best deep 

learning algorithms and machine learning, gaps, and challenges, the chosen publication was categorized, 

and the associated findings were presented. 

 

In order to fully understand current SDP-related methodologies using DL, the authors of [6] aimed to 

synthesize literature on SDP using DL, including measurements, models, techniques, datasets, and 

achievements. They also compared the performance of deep learning models with that of machine 

learning models in classifying software defects. They offered a sample of 63 primary studies conducted 

between 2010 and 2021 that met the standards for reporting rigor (quality score >= 4.5) as determined by 

the quality evaluation criteria. They provided a full SLR (quantitative and qualitative synthesis) of the 

state-of-the-art in SDP by combining data from those 63 rigorous trials with DL. They published a meta-

analysis that contrasted the performance of DL and ML in SDP, split down by research and dataset, for a 

sample of 19 primary studies that met the requirements for the MA quality evaluation. They used both 

fixed and random effects analyses, as well as presented differences between papers, to confirm the validity 

of the meta-analysis. 

 

A thorough literature review of Just-In-Time Software Defect Prediction (JIT-SDP) was released by the 

authors of [7]. Their objective was to provide a thorough overview of the most recent developments in 

JIT-SDP, covering modeling approaches, data preparation and data sources, dependent and independent 

variables, performance evaluation. They conducted a meta-analysis of earlier studies and offered a 

systematic review of 67 JIT-SDP investigations. They also described best practices for each stage of the 

JIT-SDP process. 

 

As shown in Table 1, related review papers only focused on a few perspectives over a long-time span 

(about 10 years), while our work considered more perspectives on a large number of relevant research 

works over a short time span (only 5 years from 2018 to 2022) with the aim of focusing on and discussing 

the most recent trends. In our work, the included perspectives are learning field, algorithms, performance 

measures, method types, data sources, datasets, programming languages used in datasets, tools, code 

syntax information, code semantics information, code structural information, and domain information.  

 

3. Methodology 

 

The methodology used is explained in this section. Criteria for inclusion/exclusion, the procedure and the 

obtained results are presented in the following subsections.  

 

 

 
Table 1 Related work overview 
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# Review papers Number of included papers Time span 

1. [3] 68 2010–2021 

2. [4] 22 2012-2020 

3. [5] 47 2010-2020 

4. [6] 19 2010-2021 

5. [7] 67 2000-2021 

6. Our paper 73 2018-2022 

 

3.1. Procedure 

 

Software defect prediction is the foundation for this comprehensive review. The key term "Software 

Defect Prediction" was used in a thorough search of six pertinent databases: ACM Digital Library, 

Springer, ScienceDirect, IEEE Xplore, MDPI, and Wiley. These databases were used due to their 

reputation. Database filters were utilized to screen the papers.  

 

The retrieved papers were assessed for adherence to the inclusion requirements. First, all titles and 

abstracts of the publications were reviewed to check if they complied with these requirements. Papers 

that passed the first round of screening were downloaded and stored according to the name of the source 

database. Afterwards, we re-checked all research papers through the body and conclusion again to make 

sure they meet this review's criteria. Keeping the research questions in mind, the related papers was 

thoroughly researched to extract the necessary information from the qualified papers, namely: 1) 

publication year;  2) paper purpose: solve class imbalance issue, feature selection, propose a new 

approach, or edit an existing approach in software defect prediction ; 3) algorithms and methods; 4) field 

of learning: machine learning, deep learning or data mining; 5) datasets used in training and testing; 6) 

dataset source, such as: PROMISE or NASA;  7) programming languages used in datasets; 8) method 

types include: Just-in-Time Software Defect Prediction, Within-Project Defect Prediction, and Cross-

Project Defect Prediction.; 9) evaluation measure, such as:   Recall, F-measure, Accuracy, Precision, or 

AUC; 10) tools; 11) approach used to address the unbalanced dataset issue if the paper's goal is to address 

the problem of class imbalance, such as: over-sampling or under-sampling; 12) was source code used in 

the paper? Yes or No; 13) was code semantics information used in the paper? Yes or No; 14) Was 

structural information used in the paper? Yes or No. 

 

3.2. Criteria for inclusion and exclusion 
 

The following inclusion criteria were used to find relevant studies: 1) any publication, except systematic 

reviews, that discusses how to address class imbalance issue, feature selection, propose a new approach, 

or edit an existing approach in software defect prediction; 2) published between January 2018 and April 

2022, considering the tremendous speed of change in the area of SDP over the previous five years, even 

when compared to the rate of change since the invention of the Internet; 3) papers from journals, 

conferences, or workshops. 4) written in English with no regard to location; 5) not duplicated. Outline of 

the outcome of the inclusion methodology is presented in Table 2. 

 
 

 

 

 

 

Table 2 Summary of selected papers from databases 
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# Database 
Number of 

retrieved papers 

Number of included 

papers 

Number of excluded 

papers 

1. IEEE Xplore 226 22 204 

2. Springer 81 18 63 

3. ScienceDirect 218 11 207 

4. ACM Digital Library 23 9 14 

5. MDPI 26 7 19 

6. Wiley 17 6 11 

 Total 591 73 518 

 

3.3. Results 

 

There are 592 papers in the search results; however, after the first round of assessment, only 319 were 

downloaded. 73 papers met the inclusion criteria for analysis after the second round of filtration. The 

process flow diagram for the systematic review is shown in Figure. 1. 

 

 

Figure.1: Systematic review process flow 

 

4. Literature Review 

 

In this section, details are presented on the 73 papers included in this review.  Reviewed research papers 

are categorized according to the purpose of the paper into 3 types: 1) solve class imbalance issue; 2) 

feature selection; 3) propose a new approach or edit an existing approach in software defect prediction. It 

was noticed that the words "prediction" and "detection" were used interchangeably in the review papers. 

The following subsections discuss the papers under each category. Statistics for the three goals are shown 

in Table 3. 
 

Table 3  Literature classified according to its purpose 

Purpose 
Solve class 

imbalance issue 
Feature selection 

Edit an existing approach, or 

propose a new approach 

Research papers [8]–[28] [29]–[46] [26], [28], [37], [40], [45]–[80] 

Number of papers 21 18 40 

Distribution ratio 29% 25% 55% 

4.1. Solve Class Imbalance Issue 
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Datasets for SDP are frequently quite unbalanced, which makes it challenging for classifiers to detect 

defective occurrences. Numerous strategies have recently been put up to deal with this issue. The methods 

of Over- sampling and Under- sampling are the most popular methods to resolve the problem of class 

inequality and increase prediction performance. Over-sampling techniques add new synthetic instances 

to the minority class or duplicate existing ones, whereas under-sampling techniques eliminate or combine 

instances in the majority class.  

 

There are 21 research papers that discuss the class imbalance issue, 13 out of 21 use over-sampling and 

6 out of 21 use under-sampling technique. 

 

When using a dataset for the software prediction study that focuses on the minority subset, to maximize 

performance and advantages, the authors of [8] proposed a new model by combining the heterogeneous 

stacking ensemble with SMOTE technique. To enhance defect prediction, the authors of [9] proposed a 

new model that incorporates ensemble imbalance learning and class overlap minimization using the 

AdaBoost mechanism, multiple under-sampling, and the neighbor cleaning technique. In order to produce 

more fictitious examples of the flawed classes, the authors of [10] developed an innovative hybrid 

oversampling ensemble technique. The technique combines Fuzzy Based Feature Instance Recovery, 

Majority Weighted Minority Oversampling, and random oversampling to produce an ensemble classifier. 

The authors of [11] introduced MAHAKIL, a brand-new and effective synthetic oversampling method 

depending on datasets of software failures and inheritance chromosomal theory.  

 

To resolve the concerns of class overlap and inequality, the authors of [12] suggested an a more effective 

K-Means clustering cleaning method (IKMCCA). To reduce processing time and increase forecast 

accuracy, the authors of [13] suggested model concentrate on balancing the class of datasets. It is made 

up of two methods: correlation feature selection method and revised under-sampling methodology.  

 

The authors of [14] suggested a hybrid multi objective cuckoo search under-sampled SDP method to 

handle the class imbalance concern and parameter selection of Support Vector Machine. By taking into 

account the distribution features of the datasets, a new method for reducing class imbalance approach was 

developed to balance the imbalanced dataset’s defect and non-defect instances. [15]. The authors of [16] 

suggested a novel approach to quantify the legitimacy of synthetic samples depending on their distribution 

by giving each synthetic sample a credit component. Additionally, they suggested a weight update 

approach to direct base classifiers' attention towards real examples and highly credible fake examples. To 

overcome the problem of class imbalance, the authors of [17] used SMOTE based on neural networks 

where SMOTE and neural networks were combined, the neural networks' and SMOTE's hyperparameters 

are all randomly modified via random search. 

 

The creators of [18] presented a method that uses hybrid sampling, which mixes over-sampling and under-

sampling techniques. Over-sampling for minority classes employs k-means clustering of samples and 

SMOTE generation of synthetic data based on the clustering outcome's safe zones. The possibility that 

each sample will be misclassified, and its instance hardness value are obtained for the majority class using 

the logistic regression classifier in the under-sampling method. The samples that have instance hardness 

values below a certain level are then eliminated from the databases. The authors of [19] proposed the 

Complexity based Over-sampling Technique (COSTE), which creates synthetic instances by combining 

pairs of flawed instances with similar complexity. COSTE boosts data diversity, keeps prediction models' 

ability to identify flaws, and considers the variable testing effort required in various instances. To address 

the unequal distributions in the SDP, the authors of [20] introduced a mechanism for generating samples 
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for the minority class from a high-dimensional sampling space using random over-sampling. Two 

restrictions are applied to this mechanism to provide a reliable method for creating new synthetic samples, 

which involves narrowing the range of random oversampling and differentiating the majority-class 

samples in key areas.  

 

For efficient defect prediction using SVMs, a unique filtering technique (FILTER) was suggested in [21]. 

The authors of [22] presented a new over-sampling method that generate synthetic samples using a genetic 

algorithm. The concept of weighted complexity was suggested by the authors of [23]. Each sample's 

weighted complexity is determined by taking into account the weights of its many condition variables. 

Based on the weighted complexity, they proposed a new under-sampling technique called WCP-

UnderSampler and used it to forecast software defects. Neighborhood based Under-Sampling (N-US) 

algorithm is a novel solution that was suggested in [24] to deal with the issue of class imbalance. The 

authors of [25] conducted this study to look into the connection between the chosen instances' distance 

and the effectiveness of SMOTE-based approaches. Based on self-organizing data mining, the authors of 

[26] suggested a new technique for SDP. This technique can show that software metrics and defects are 

related causally. In [27], they proposed a classification model that blends the ensemble learning technique 

XGBoost with SMOTE-Tomek sampling. For Cross-Project Defect Prediction, the authors of [28] 

introduced a new algorithm called (TSboostDF) based on transfer leaning that takes into account class 

imbalance and the transfer of knowledge. 

 

After analyzing recent research papers dealing with the issue of class imbalance, it is clear that the 

majority of researchers use the Synthetic Minority Oversampling Technique (SMOTE) to solve this 

problem. 

 

4.2. Feature Selection 

 

In order to avoid overfitting, increase accuracy, and save training time, feature selection is the procedure 

of deleting undesired and unnecessary properties from high-dimensional datasets. There are 18 research 

papers discussing feature selection. 

 

By combining wrapper and filter techniques, the authors of [31] suggested two brand-new hybrid software 

defect prediction models to pinpoint the important metrics. A feature grouping-based feature selection 

technique based on the hybrid Wrapper and Filter framework was proposed by the authors of [29]. The 

authors of [30]  proposed a new nonlinear manifold detection model in order to reduce the dimensions of 

high dimensional datasets while increasing prediction accuracy and software quality. The authors [32] 

proposed a novel Nonlinear Manifold Detection Model to find the best attributes, eliminating any 

unnecessary, duplicate, and undesirable attributes in the process. 

 

Local tangent space alignment SVM (LTSA-SVM) technology was used by the creators of [33] to offer 

a novel model. K-nearest neighbor, support vector machine, and naive bayes classifiers, as well as the 

firefly algorithm, were utilized in [34] to categorize the features that were chosen. The authors of [35] 

suggested a framework that builds the prediction model using the Naive Bayes classification method and 

PCA for dimensionality reduction. The authors of [36] suggested a hybrid preprocessing strategy in which 

feature selection is followed by iterative partitioning filtering.  

 

The authors of [37] built the improved metaheuristic search based on feature selection method called 

(EMWS) by combining a distinct complementing simulated annealing approach with the recently 
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developed whale optimization algorithm, which may successfully choose fewer but closely related 

representative features. In order to overcome the high dimensionality and filter rank selection issues in 

SDP, a new adaptive rank aggregation-based ensemble multi-filter feature selection (AREMFFS) 

technique was presented in [38]. By utilizing the island BMFO (IsBMFO) paradigm, an effective binary 

form of MFO (BMFO) was suggested in [39]. In [40], the research of SDP model based on LASSO-SVM 

was the main objective, and the issue of the majority of SDP models' subpar prediction accuracy was 

raised. For managing the dataset's dimensionality issue and enhancing classification performance, the 

authors of [41] presented a feature extraction technique called FLDA.  

 

The authors of [42] trained a model for just-in-time defect prediction based on random forest classification 

to increase the prediction effectiveness of just-in-time defect prediction technology. In [43], the authors 

proposed a feature selection and transfer learning-based method for SDP with metric compensation. An 

SDP methodology based on heterogeneous feature selection and nested-stacking was suggested by the 

authors of [44]. A unique SDP method based on PCA and RVFL was proposed by the authors of [45]. 

The authors of [46] suggested a hybrid classifier that uses a bug tracker application to track and collect 

defect metrics while gaining semantic knowledge of the traits of the errors by employing an ontology of 

software flaws. 

 

After analyzing the recent research papers dealing with feature selection, we found that most researchers 

use Chi-square, Information Gain (IG), Principal Component Analysis (PCA) and LASSO method to 

choose the important features. 

 

4.3. Edit an Existing Approach or Propose a New Approach 

 

There are 40 research papers which propose a new approach or edit an existing approach to predict 

software defects. 

 

To improve software defect prediction, a novel technique dubbed node2defect employs the recently 

announced network embedding method node2vec to automatically learn to encapsulate dependency 

network structure into low-dimensional vector spaces was proposed by the authors of [47]. In order to 

distinguish between software entities that are flawed and those that are not, the creators of [48] created a 

novel supervised classification technique called HyGRAR. This technique incorporates gradual relational 

association rule mining and ANN. On the basis of atomic class association rule mining (ACAR), the 

authors of [49] proposed a unique supervised method for SDP. In [50], the authors intended to offer a 

comprehensive and successful solution for both CSDP and WSDP issues. The semi supervised dictionary 

learning method was introduced, and a cost-sensitive kernelized semi supervised dictionary learning 

(CKSDL) strategy was suggested. Deep learning, a potent representation-learning technique, was 

suggested by the authors of [51] as a way to automatically learn applications semantic representations 

from code modifications and the files source code. A unique defect prediction model called CAP-CNN 

(Convolutional Neural Network for Comments Augmented Programs), which is a deep learning model, 

was proposed in [52]. It automatically embeds code comments in producing semantic features from the 

source code for SDP.  

 

In [53], authors discussed their practical implementation of a novel deep learning tree-based defect 

detection model. This model was created using a Long Short Term Memory network with a tree-structure, 

which perfectly correlates to the Abstract Syntax Tree (AST) representation of source code. A system for 

determining whether a program module includes bugs was proposed by the creators of [54] and is based 
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on Deep Belief Network Prediction Model (DBNPM). The PROMISE Source Code (PSC) dataset was 

created by the authors of [55] to expand the CNN research's initial dataset, which they called the 

Simplified PROMISE Source Code dataset. Then, they suggested an enhanced CNN method for WPDP. 

The authors of [56] presented a unique weighted naive Bayes strategy for SDP based on information 

diffusion. The authors of [57] presented a method called Defect Prediction through Attention Mechanism 

(DP-AM) to fully utilize the semantics and static metrics of applications. The authors of [58] introduced 

Seml, a unique framework for defect prediction that combines word embedding and deep learning 

techniques.  

 

Density-percentile-average (DPA), a metric that was suggested by the authors of [59], was utilized as the 

goal of model optimization on the training set. Then, they developed models using logistic regression and 

calculated the logistic regression coefficients using the differential evolution algorithm. Without the need 

of feature-extraction tools, the creators of [60] suggested an end-to-end framework that could directly 

obtain prediction results for programs. In order to achieve this, they initially extracted visual attributes 

like image featured from programs using the self-attention method, applied it to visualize programs as 

images, used transfer learning to lessen the disparity in sample distributions between projects, and then 

fed the image into a pre-trained, deep learning model for defect prediction. In [61], the authors presented 

a novel method for predicting the quantity of software flaws using deep learning techniques. They began 

by doing data normalization and log transformation on a publicly accessible dataset. They next did data 

modelling. Third, they used a deep neural network-based model that was specifically created to receive 

the modelled data and forecast the quantity of flaws. The SDP techniques operated at units, like a class 

or module, which made it more difficult for developers to pinpoint the issue.  

 

The authors of [62] proposed a novel method called Statement-Level Software Defect Prediction Using 

Deep-Learning Model (SLDeep) to address this problem. Using a long short-term memory (LSTM) 

network, the authors of [64] were able to automatically extract the semantic and contextual elements from 

the source code. The Convolution Neural Network (CNN) was employed in [66] to identify the software 

components that contain defects. A collection of software modules from five specific datasets were 

employed in this study using static code metrics. SDP model based on program slice and deep learning 

was proposed by the creators of [67]. They used the Gated Recurrent Unit (GRU) to create features and 

retrieved the program slice based on the system dependence graph. The authors of [68] proposed a brand-

new technique called ALTRA that makes use of both active learning and TrAdaBoost.  

 

A unique method for SDP of unlabeled datasets using modified objective cluster analysis (OCA) was 

proposed in [63]. In [69], Domain adaptation (DA) is implemented using kernel twin SVMs (KTSVMs) 

to fit the distributions of training data for various applications. Additionally, KTSVMs with DA function 

(also known as DA-KTSVMs) are employed as the CPDP model. The authors of [70] introduced a new 

strategy for drift detection and adaptation based on paired learner that adjusts concepts dynamically by 

updating one of the pair's learners. A new paradigm for defect prediction based on hierarchical neural 

networks (DP-HNN) was proposed by the creators of [71]. The enormous file-level AST was divided into 

many subtrees according to certain AST nodes important to the SDP job, utilizing the AST's hierarchical 

structure.  

 

In order to forecast software problems, the developers of [72] suggested an approach that incorporated 

deep learning techniques and word embedding. They would map tokens using an abstract syntax tree 

derived from the source code. To better reduce the class overlap issue without modifying hyperparameters 

in SDP, The class overlap cleaning based on the radius technique was presented by the authors of  [73]. 
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To enhance defect prediction performance on CPDP, the authors of [74] set out to jointly learn statement 

level trees (SLT) and reduce data distribution differences using maximum mean discrepancy (MMD). A 

novel code graph model called Augmented-CPG was put forth in [75]. A defect region candidate 

extraction strategy specific to the defect type was suggested based on this representation. Key information 

can be embedded into end-to-end learning software modules' code semantics using the SDP technique 

that the authors of [76] presented. This method was based on the Transformer model and was entirely 

dependent on self-attention mechanisms.  

 

The authors of [77] aimed to develop a correlation based neural network model for detecting defects in 

software applications. Using modelled data, a novel correlation-based modified long short-term memory 

(CM-LSTM) was introduced to estimate the software defects in software modules. A solution to eliminate 

the unfavorable confounding effects of size metric was put forth by the creators of [78]. A spotted hyena 

optimizer classifier used by the creators of [65] to anticipate problems in cross-projects. For the purpose 

of finding the most effective classification rules, confidence and support were used as a multipurpose 

fitness function. A fresh methodology was proposed by the authors of [79] based on a comprehensive 

feature set that includes software metrics for both products and processes that were gathered from 

software system commits and their history. A form of the deep temporal convolutional network based on 

the layers of hierarchical attention was also incorporated into the algorithm in order to carry out the defect 

prediction. Semantic feature based on BERT and bidirectional long short-term memory, which captured 

the code semantics, were used in the SDP model that authors of [80] provided to forecast software defects. 

 

Notably, six papers [26], [28], [37], [40], [45], [46] combine more than one category, such as (solve class 

imbalance issue & propose a new approach or edit an existing approach) or (feature selection & propose 

a new approach or edit an existing approach), already presented in previous categories. 

 

After analyzing the recent research papers that propose a new approach or edit an existing approach, we 

found that the most used algorithms are Long Short-Term Memory (LSTM), Convolutional Neural 

Network (CNN), Graph Neural Network (GNN), Artificial Neural Network (ANN), Recurrent Neural 

Networks (RNN), Back Propagation (BP) neural network, Logistic Regression, Random Forrest, Naïve 

Bayes and A-priori. 

 

5. Discussion 

 

In this section, we elaborate on our insights and findings in software defect prediction research field. The 

following subsections discuss different perspectives to answer the previously mentioned research 

questions. Subsection 5.1 answers Q1: Is SDP a hot research field? Subsection 5.2 answers Q2: What is 

the most widespread learning field, algorithms, metrics, and method types in SDP? Subsection 5.3 

answers Q3: What are the most common data sources, datasets distributions and used languages in SDP? 

Subsection 5.4 answers Q4: What are the dominant tools used in SDP field? Subsection 5.5 answers Q5: 

How popular are Code Syntax, Semantics, Structural and Domain Information? 

 

5.1. Research Field Recency  

 

The distribution of research papers according to the publication year is shown in Figure. 2. Notably, SDP 

is a very hot research topic. 18 papers were published in 2021. During only 4 months in 2022. (From 

January 2022 to April 2022), 16 research papers have been published, showing a clear rise in scholarly 

attention. 



SOFTWARE DEFECT PREDICTION APPROACHES REVISITED     41 

 

 

 

Figure. 2: Distribution of reviewed papers according to publication year 

 

5.2. Techniques, Performance Metrics and Method Types 

 

Techniques, performance metrics and types of methods are covered in this section to help the researchers 

learn the most common areas of learning, algorithms, performance measures, along with statistics about 

method types. The details will be discussed in the following two subsections. 

 

5.2.1. Techniques and Performance Metrics 

 

Identifying the algorithms used is crucial for any researcher interested in the field of predicting software 

flaws. Realizing the most common and least common types would help him in deciding on conducting 

research on which type. Our review includes research papers in different areas of learning such as machine 

learning, deep learning, and data mining. After analyzing the included papers, we noticed that 64% of the 

papers fall into the field of machine learning, 31% of the papers fall into the field of deep learning, and 

5% of the papers fall into the field of data mining. Therefore, we encourage researchers to conduct more 

research in the field of deep learning, especially that work in the field of deep learning has better 

performance metrics values compared to that in the field of machine learning and data mining. Moreover, 

we encourage researchers to pay more attention to the field of data mining because the number of research 

works in this field is very few compared to the other fields. 

 

The use of performance measures is a must to evaluate the work and determine whether the research paper 

has good or bad results compared to benchmark approaches. The performance measures used vary 

according to the field of research. After conducting a comprehensive analysis on the included papers, we 

found that five measures dominate the evaluation of predicting software defects, namely: F-measure, 

AUC, Recall, Accuracy and Precision. Notably, 67% of papers used F-measure, 49% of papers used AUC, 

44% of papers used Recall, 41% of papers used Accuracy, and 36% of papers used Precision. 
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Details regarding the field of learning, algorithms and performance metrics used in reviewed papers are 

shown in Table 4. 

 
Table 4 Techniques and performance metrics details 

Paper 
Field of 

learning 
Algorithms and techniques  Performance metrics 

[79] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deep 

Learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deep 

Learning 

 

 

 

Temporal Convolutional Networks (TCN network) Accuracy, F-measure 

[51] Deep Belief Network (DBN), ASTs, bag-of-words Precision, Recall, F-measure 

[61] Deep Neural Network-based model 

Mean Square Error (MSE), 

Squared correlation 

coefficient  

[55] 
Improved CNN model, ASTs, Word Embedding, Skip-gram 

model 

F-measure, G-measure, and 

MCC 

[71] 
Hierarchical Neural Network (HNN), Bidirectional LSTM (Bi-

LSTM) algorithm, ASTs, Word Embedding 
MCC, AUC 

[57] 

Defect Prediction through Attention Mechanism (DP-AM), 

ASTs, Recurrent Neural Network, self-attention 

mechanism, global attention mechanism, Bi-LSTM, Word 

Embedding 

 F-measure 

[53] Tree-structured LSTM network (Tree-LSTM), ASTs 
F-measure, Precision, Recall, 

AUC 

[60] 
Deep Transfer Learning (DTL) model based on AlexNet network 

with self-attention mechanism and transfer learning 
F-measure 

[62] Long Short-Term Memory (LSTM), ASTs 
Accuracy, Recall, Precision, 

F-Measure 

[67] 
System Dependence Graph (SDG), leverage Gated Recurrent 

Unit (GRU), ASTs, Word2vec, CBOW 
Precision, Recall, F-measure 

[52] 
CAP-CNN (Convolutional Neural Network for Comments 

Augmented Programs), Word2vec model 
F-measure 

[58] 
ASTs, Word Embedding, a Continuous Bag of Words (CBOW) 

model, LSTM, Word2vec2, CBOW 
Precision, Recall, F-measure 

[80] 

Bidirectional Long Short-Term Memory (BiLSTM), Data 

augmentation technique, BERT-based semantic feature, Attention 

mechanism, ASTs 

Precision, Recall, F-measure 

[74] 

Statement semantic learning and maximum mean discrepancy, 

Word Embedding, Word2Vec, Bi-GRU model,  

Stochastic Gradient Descent (SGD) algorithm, ASTs. 

AUC 

[54] Deep Belief Network, BP algorithm 
Accuracy, Precision, Recall, 

F-measure 

[64] 
Long Short-Term Memory (LSTM), ASTs, Word Embedding 

technique 
Precision, Recall, F-measure 

[77] Correlation-based modified LSTM 

Precision, Accuracy, True 

Positive Rate (TPR), True 

Negative Rate (TNR), False 

Positive Rate (FPR), F-

measure, AUC-ROC 

[72] 
LSTM, ASTs, Word Embedding, Continuous Bag of Words 

(CBOW), Word2Vec 

Accuracy, Precision, Recall, 

F-measure 

[75] 

Augmented Code Property Graphs (Augmented-CPGs), 

Word2Vec, Graph Neural Network (GNN), ASTs, Word 

Embedding,  

Word2Vec 

Accuracy, Recall, Precision, 

F-measure, AUC 
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[76] 
 Logistic Regression, CNN, Transformer model and Softmax 

Neural Network, ASTs, word embedding 
F-measure 

[66] CNN Accuracy 

[46] Ontology, GRU model 

Precision, Recall, Accuracy, 

false negative rate (FNR), F- 

measure 

[37] 

Deep 

Learning + 

Machine 

Learning  

Whale Optimization Algorithm (WOA), Kernel Extreme 

Learning Machine (KELM) for new approach to improve 

performance using Deep Learnin, simulated annealing (SA) for 

feature selection using Machine Learning, Convolutional Neural 

Network (CNN) 

F-measure, MCC, G-

measure, AUC 

[59] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Machine 

Learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A new method called DEJIT based on 

differential evolution algorithm, 

Logistic Regression 

Popt, Accuracy 

[13] 

Modified Under-Sampling method (MUS) and a Correlation 

Feature Selection (CFS) method, Z-score method, Tomek link 

(TLink) technique, Greedy Forward Selection (GFS) algorithm. 

F-measure, Processing time 

(s) 

[42] 

LIME (Local Interpretable Modelagnostic Explanations) 

Interpretability technique. 

SP (Sub-modular Pick) LIME (SP-LIME). 

Accuracy, Recall, F-

measure, AUC 

[18] K-Means, SMOTE, Logistic Regression Accuracy 

[16] Anovel Credibility-based Imbalance Boosting (CIB) method 
AUC, F-measure, Adjusted 

F-measure (AGF), MCC 

[56] 
Information Diffusion Model (IDM), Weighted Naïve Bayes 

(WNB) 
F-measure 

[22] Genetic Algorithm (GA) 
Accuracy, Recall, False 

Alarm Rate 

[45] 
Random Vector Functional Link (RVFL), Principal Component 

Analysis (PCA), Randomized Neural Networks 
AUC–ROC, F-measure 

[12] 
Improved K-Means Clustering 

Cleaning (IKMCCA) 
balance, Recall, AUC 

[50] 

Semi-supervised dictionary learning technique, sensitive 

kernelized Semi-supervised dictionary learning (CKSDL) 

approach 

Recall, Precision, F-measure, 

AUC 

[44] 

Nested-Stacking, heterogeneous feature selection., CatBoost, 

LightGBM, AdaBoost, Random Forest, MLP, Gradient Boosting 

Decision Tree, Meta-classifier of Logistic Regression. 

Precision, Recall, F-measure, 

AUC 

[69] 

Improved Quantum Particle Awarm Optimization algorithm 

(IQPSO), DA function, kernel twin support vector machines 

(KTSVMs)  

F-measure, AUC 

[63] Modified Objective Cluster Analysis (OCA) algorithm, Z-score 
Precision, Recall, F-measure, 

AUC 

[14] 

Hybrid Multi- Objective cuckoo search Under Sampled SDP 

model based on SVM (HMOCS-US-SVM), K-Means, 

Neighborhood Clearance, and NearMiss-2 

Probability of Detection, 

False Positive Rate, G-mean 

[20] 
Radius Synthetic Minority Over- sampling Technique 

(RSMOTE) 
Recall, Precision, F-measure 

[15] 

An innovative Class Imbalance Reduction (CIR) algorithm for 

creating new samples is based on determining the centroid of all 

attributes of minority-class samples. 

Accuracy, Precision, Recall, 

F-Measure, Specificity, G-

mean 

[68] 

Active Learning, Tradaboost, Weighted variant of Support Vector 

Machine (WeightSVM), 

Burak filter 

AUC, F-measure 

[11] 
MAHAKIL, a novel and efficient synthetic oversampling 

approach based on the chromosomal theory of inheritance 
Precision, Recall, F-measure 
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[43] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Machine 

Learning 

 

 

 

 

 

 

Pearson feature selection method, transfer learning technique, a 

metric compensation method called peUpMeCom consists of two 

main phase (1) Pearson coefficients (2) Upgrade metric 

compensation (upMeCom) 

AUC, F-measure 

[28] 
Transfer-leaning algorithm (TSboostDF), Bernoulli Sampling 

based on Weight (BSW), cumulative method 

F-measure, G-mean, MCC, 

balance 

[23] WCP-UnderSampler based on weighted complexity Accuracy, F-measure, AUC 

[29] FCBF-based grouping algorithm, PSO algorithm AUC 

[47] Node2Vec F-measure, AUC 

[8] 

SMOTE technique with the heterogeneous stacking model  

composed by three base classifiers (Naïve Bayes, Multilayer 

Perception, J48) and a meta classifier (Boosting or Bagging). 

TP Rate, FP Rate, Precision, 

Recall, F-measure,  

MCC, ROC Area, PRC Area 

[30] 

Nonlinear Manifold Detection Techniques (ISOMAP (Isometric 

Feature Mapping), LLE (Locally Linear Embedding), Diffusion 

Maps, Laplacian Eigen Maps, NPE (Neighborhood Preserving 

Embedding), SPE (Stochastic Proximity Embedding), LPP 

(Linearity Preserving Projection), L-ISOMAP (Landmark 

ISOMAP)) 

Accuracy Percentage, F-

measure, AUC 

[19] Complexity-based OverSampling TEchnique (COSTE) 

AUC, balance, probability of 

detection (pd), probability of 

false alarms(pf), Norm 

(Popt), Accuracy 

[33] 
Local Tangent Space Alignment SVM 

(LTSA-SVM) algorithm 

Accuracy, Precision, Recall, 

F-measure 

[70] Random Forrest, Paired Learners of Naïve Bayes. Accuracy, ROC, AUC 

[38] 

A new Adaptive Rank aggregation-based Ensemble Multi Filter 

Feature Selection (AREMFFS). 

Three filter FS methods: chi-square (CS), Relief (REF), 

information gain (IG). 

Accuracy, AUC, F-measure 

[39] 
Swarm intelligence algorithm. 

Island-Based Moth Flame Optimization (IsMFO) Algorithm 
Recall, Recall, G-mean 

[21] 
Support Vector Machines (SVMs), a novel Filtering technique 

(FILTER) 

ROC, AUC, Accuracy, F-

measure 

[34] Firefly algorithm 
F-measure, Recall, Precision, 

Accuracy  

[24] A new Neighborhood based Under- Sampling (N-US) technique. ROC, AUC, Accuracy 

[40] 
LASSO–SVM (Use LASSO method and Support vector machine 

(SVM)) 

Accuracy, Precision, Recall, 

F-measure 

[9] 
AdaBoost mechanism, Ensemble Random Under- Sampling 

(ERUS), Neighbor Cleaning Learning (NCL) 

G-mean, Probability of False 

alarm (PF), Probability of 

Detection (pd) 

[35] 
Principal Component Analysis (PCA) and Naïve Bayes 

classification algorithm 
Accuracy 

[41] 
Linear Discriminant Analysis by Fisher (FLDA) feature 

extraction technique 
Recall, AUC 

[73] 

Machine 

Learning 

Radius-based class Overlap Cleaning Technique (ROCT) 

AUC, balance, Probability of 

detection (pd), probability of 

false alarm (pf) 

[17] 
Synthetic Minority Over-sampling Technique (SMOTE), Neural 

Network (NN) 
Recall, balance 

[31] 

Wrapper and filter techniques, 

Support Vector Machines (SVM), Artificial Neural Network 

(ANN), Maximum Relevance (MR) filter approach 

Accuracy, AUC 

[36] The Maximum Likelihood Logistic Regression (MLLR) 
AUC, Accuracy, Precision, 

Recall, F-measure 
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[32] 

Nonlinear Manifold Detection (NMD), ISOMAP (Isometric 

Feature Mapping), LLE (Locally Linear Embedding), 

FASTMVU, D Maps (Diffusion Maps), NPE (Neighborhood 

Preserving Embedding), SPE (Stochastic Proximity Embedding). 

Correlation based Feature selection subset evaluator (CFs) along 

with Chi-Squared attribute evaluator (Chi-Squared). 

Accuracy, MAE, RMSE, 

AUC 

[10] 

Random Over-Sampling (ROS), Majority Weighted Minority 

(MWM), Fuzzy-Based Feature and Instance Recovery using  

Information decomposition (FIDos), Random Forest (RF) 

Accuracy, True Positive Rate 

(TPR), False Negative Rate 

(FNR), AUC, F-measure 

[25] Improved SMOTUNED (that is a SMOTE-based technique) 

AUC, balance, probability of 

detection (pd), Probability of 

false alarm (PF) 

[78] 
Causally Removing Negative Confound Effects Method 

(CRNCEM) 
Precision, Recall, F-measure 

[27] 
SMOTE-Tomek sampling and ensemble learning algorithm 

(XGBoost) 
Accuracy, F-Measure, AUC 

[48] 

Machine 

Learning + 

Data Mining 

HyGRAR is a non-linear hybrid model that combines relational 

association rule mining and artificial neural networks 
 AUC 

[26] 

Data Mining  

Self-Organizing Data Mining (SODM) algorithm, SMOTE 

algorithm 

Precision, probability of 

detection (pd), probability of 

false alarm (PF), F-measure, 

AUC 

[65] Spotted Hyena Optimizer (SHO) algorithm 

F-measure, Sensitivity, 

Recall, Precision, 

Specificity, Accuracy 

[49] Atomic Class-Association Rule Mining (ACAR), A-priori AUC 

 

5.2.2. Method Types 

 

The type of method indicates the relation between the target project that we want to predict its defects 

and the source projects found in the datasets. Three method types exist: 

 

• Cross-Project Defect Prediction (CPDP): is a procedure that uses data from other projects to 

forecast defects in a target project. 

 

• Within-Project Defect Prediction (WPDP): is a procedure that uses information from the same 

project to forecast defects in a target project. 

 

• Just-In-Time Defect Prediction (JITDP): is the process of predicting defects on a commit level. 
 

As shown in Figure 3, method types are divided according to the field of learning. Noticeably, the number 

of research papers that use cross-project defect prediction are similar to the number of research papers 

that use within-project defect prediction across all types of learning, whether machine learning, deep 

learning or data mining. On the other hand, the just-in-time defect prediction method always scores in 

few numbers in all types of learning. Just-in-time defect prediction has not received its eligible scholarly 

attention. 
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Figure. 3: Distribution of method types according to field of learning 

 

5.3. Data Details 

 

Data is one of the crucial components of any research field that uses machine learning, deep learning, or 

data mining. The data mainly affects the model that is trained on this data. The greater the size and 

accuracy of the data, the higher the efficiency of the model. In the following three subsections, we discuss 

the data criterion from three perspectives, namely: data source, dataset, and programming language. 

 

5.3.1. Dataset Source 

 

There are many data sources used in predicting software defects. Knowing the data source that is used in 

training and testing the model is important because the more data source is used, the more reliable it is. 

After careful examination of the included papers, we found that 24 data sources exist. The four most 

frequently used data sources are PROMISE, NASA, ReLink and AEEEM sorted from most to least 

popular. Specifically, PROMISE has been used 48 times; NASA has been used 24 times; ReLink has 

been used 9 times; AEEEM has been used 8 times. Details on these four sources along with the rest of 

the data sources are shown in Figure. 4. 

 

Since there are four data sources that are the most famous and have proven good results in predicting 

software defects, we highly encourage researchers to use them for credible results.  

 

5.3.2. Datasets 

 

Researchers are looking for popular datasets so that they can train and test their models to prove their 

efficiency and to compare their models with other researchers. By studying the datasets used in the 

included research papers, we found that there is a large number of datasets. Moreover, each researcher 

uses more than one dataset in his research. We summarized all datasets used in different research papers 

in Table 5. The table includes four columns, the first column includes the name of the dataset, and the 

second column includes references of the research papers that used this dataset. The third column includes 
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the number of research papers that used this dataset, and the fourth column shows the proportion of 

research papers that made use of this dataset. 

 

Table 5 helps new researchers to identify the most used datasets in training, testing, and comparing the 

existing models, thus reducing the time required to select the datasets they will use in their research. 

 

 

Figure. 4: Distribution of datasets sources 

 

 

Table 5 Details of datasets 

Dataset Papers Number 

of 

papers 

Distribut

ion ratio 

Camel [11]–[13], [15], [16], [18], [19], [22], [23], [25], [26], [37]–[39], [44], [45], 

[47], [51]–[53], [57], [58], [60], [64], [67]–[69], [71]–[74], [80] 

32 44% 

Xalan [12], [15], [16], [18]–[20], [23], [25], [26], [28], [29], [37]–[39], [44], [47], 

[50]–[53], [56]–[58], [60], [64], [67]–[69], [71], [73], [74], [80] 

32 44% 

Ant [11]–[13], [15], [16], [18], [19], [22], [23], [25], [26], [28], [36]–[39], [44], 

[45], [47], [48], [51], [53], [60], [63], [67], [68], [71], [73], [74], [80] 

30 41% 

PC [9], [10], [12]–[14], [16]–[18], [21], [24], [26], [27], [29], [31], [33]–[36], 

[38]–[41], [43], [49], [50], [54], [56], [66], [73], [78] 

30 41% 



48 Khaled S. Shebl et al. 

 

Lucene (LC) [12], [15], [20], [25], [26], [32], [37], [39], [43]–[45], [47], [50]–[53], [56]–

[58], [60], [64], [67]–[69], [71], [73], [74], [76], [80] 

29 40% 

Jedit [11], [15], [16], [19], [22], [23], [25], [26], [28], [37]–[39], [44], [47], [48], 

[51], [53], [57], [58], [60], [64], [67], [68], [71], [73], [74], [80] 

27 38% 

KC [9], [10], [13], [14], [16]–[18], [21], [24], [26], [27], [29], [31], [33]–[35], 

[38], [39], [41], [43], [49], [54], [61], [65], [66], [70], [78] 

27 37% 

Xerces [11], [12], [15], [16], [18], [19], [22], [23], [25], [26], [28], [37], [39], [44], 

[50]–[53], [57], [58], [60], [64], [67], [71], [74], [80] 

26 36% 

CM [9], [10], [12], [14], [16], [18], [21], [24], [26], [27], [31], [33]–[36], [38], 

[39], [41], [43], [49], [50], [54], [56], [66], [73], [78] 

26 36% 

Poi [12], [15], [19], [25], [26], [37], [39], [44], [45], [47], [51]–[53], [56]–[58], 

[60], [64], [67]–[69], [71], [73], [74], [76], [80] 

26 36% 

Synapse [11], [15], [19], [20], [22], [23], [25], [26], [28], [37], [44], [47], [51]–[53], 

[57], [58], [60], [63], [67], [71], [73], [74], [76], [80] 

25 34% 

Ivy [11], [15], [19], [20], [22], [23], [25], [26], [37], [39], [44], [45], [47], [51]–

[53], [56], [60], [67], [68], [71], [73], [80] 

23 32% 

Log4j [11], [15], [16], [18]–[20], [22], [25], [26], [39], [44], [51]–[53], [58], [60], 

[63], [64], [67], [68], [71], [73], [74] 

23 32% 

MW [9], [10], [12], [14], [16], [20], [26], [27], [33], [35], [38], [39], [49], [50], 

[54], [56], [66], [73], [78] 

19 26% 

Velocity [12], [15], [18]–[20], [23], [25], [26], [29], [38], [44], [47], [56], [71], [73], 

[74], [80] 

17 23% 

JM [10], [16]–[18], [21], [24], [27], [31], [33], [39], [43], [49], [54], [65], [70], 

[77] 

16 22% 

Tomact [11], [12], [15], [16], [22], [28], [36], [38], [39], [47], [48], [50], [68] 13 18% 

Eclipse JDT 

core (JDT) 

[12], [13], [36]–[38], [43], [50], [51], [69], [73] 10 14% 

MC [13], [16], [26], [27], [33], [39], [49], [54], [66], [78] 10 14% 

PDE [12], [18], [36]–[38], [43], [50], [69], [73] 9 12% 

OpenIntents 

Safe 

[12], [30], [37], [38], [43], [50], [63], [69], [73] 9 12% 

ZXing [12], [30], [37], [38], [43], [50], [63], [69], [73] 9 12% 

Apache [12], [30], [37], [38], [43], [50], [63], [69], [73] 9 12% 

Equinox 

Framework 

(EQ) 

[12], [18], [37], [38], [43], [50], [69], [73] 8 11% 

AR [10], [12], [26], [31], [32], [48], [49], [73] 8 11% 

Mylyn (ML) [12], [18], [37], [38], [43], [50], [69], [73] 8 11% 

PostgreSQL 

(POS) 

[13], [42], [44], [51], [59], [69] 6 8% 

Redaktor [11], [12], [15], [20], [22], [38] 6 8% 

Prop [16], [37], [45], [68]–[70] 6 8% 

Columba 

(COL) 

[13], [42], [44], [59], [69] 5 7% 

Mozilla 

(MOZ) 

[13], [42], [44], [59], [69] 5 7% 

Arc [12], [15], [20], [22], [28] 5 7% 

Bugzilla 

(BUG) 

[42], [44], [59], [69] 4 5% 

Eclipse 

Platform 

(PLA) 

[42], [44], [59], [69] 4 5% 

Eclipse JDT [42], [44], [59] 3 4% 

Xerces-init [15], [25], [73] 3 4% 

forrest [26], [63] 2 3% 
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berek [32], [63] 2 3% 

sklebagd [26], [63] 2 3% 

pbeans2 [11], [22] 2 3% 

systemdata [11], [22] 2 3% 

Skarbonka [12] 1 1% 

Open-source 

projects 

contributed by 

Samsung 

[53] 1 1% 

DrJava [47] 1 1% 

Genoviz [47] 1 1% 

Jmri [47] 1 1% 

Jmol [47] 1 1% 

Jppf [47] 1 1% 

Eclipse34_deb

ug 

[30] 1 1% 

Eclipse [38] 1 1% 

MIS [61] 1 1% 

119,989 

C/C++ 

programs 

within 

Code4Bench 

[62] 1 1% 

Average [13] 1 1% 

e-learning [63] 1 1% 

termo [63] 1 1% 

syzbkafucha [63] 1 1% 

SWT [38] 1 1% 

Simplified 

PROMISE 

Source Code 

(SPSC) 

[55] 1 1% 

Apache 

Luence 

[73] 1 1% 

Juliet Test 

Suite for Java 

in SARD 

[75] 1 1% 

Linux kernel [51] 1 1% 

Xorg [51] 1 1% 

Jackrabbit [51] 1 1% 

BroadleafCom

merce 

[58] 1 1% 

elasticsearch [58] 1 1% 

hazelcast [58] 1 1% 

netty [58] 1 1% 

orientdb [58] 1 1% 

ZooKeeper [79] 1 1% 

Xerces2 Java [79] 1 1% 

JFreeChart [79] 1 1% 

Jackson Data 

Format 

[79] 1 1% 

Jackson Core [79] 1 1% 

Commons 

Imaging 

[79] 1 1% 
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pdftranslator [26] 1 1% 

wspornaganiep

i 

[26] 1 1% 

 

5.3.3.  Use of Programming Languages 

 

Knowing the programming languages used in datasets is important in the field of predicting software 

defects. Every person wants to use a dataset that includes specific programming languages, whether he is 

interested in it or has experience with it. Figure. 5 shows the 3 programming languages that were used 

the most in the datasets. First, Java, which is used in 35 research papers. Second, C, which is used in 17 

research papers. Third, C++, which is used in 9 research papers. These three languages along with the 

rest of the statistics are in Figure. 5. 

 

By analyzing Figure 5, we notice an important finding. Very popular programming languages exist, but 

they are not used in datasets or are rarely used, such as Python, C#, R and JavaScript. Therefore, we 

highlight the need for researchers to build datasets that use these important programming languages that 

are widespread in the software development market. 
 

 

Figure. 5: Distribution of programming languages 

5.4. Tools 

 

This section discusses the tools used to build, test, and compare models, preprocess data, or display the 

results of performance measures. After summarizing all the tools used in the included papers, we found 

that the four most used tools are as follows Python scripts/libraries, Weka, MATLAB, and Scikit Learn 

Tool. 15% of the papers use Python scripts/libraries, 15% of papers use Weka, 11% of papers use 

MATLAB, and 7% of papers use the Scikit Learn tool. Figure 6 shows the number of research papers that 

use each tool. 
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Figure. 6: Distribution of used tools 

 

5.5. Code Syntax, Semantics, Structural and Domain Information 

 

Prediction of software defects remains a difficult problem. There have been numerous attempts to create 

efficient techniques for forecasting future software flaws. Prior research on defect prediction was based 

on code metrics. Unfortunately, code metrics are incapable of representing the implicit features of 

defective modules' syntactic, semantic, structural, and domain information. When compared to earlier 

methods based on explicit features (code metrics), the application of these implicit features yields superior 

outcomes. 
 

This section describes the number of papers that use code syntax, semantics, structural and domain 

information. There are 19 papers that use source code semantics information, 18 papers that use source 

code structural information, 17 papers that use source code structural syntax information and only 3 

papers that use domain information. Results are shown in Figure. 7. 
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Although the domain information greatly affects the accuracy, it has been used very little. The reason 

behind that is the training dataset contains data in only one field (such as the commercial, medical, or 

space field) which increases accuracy. On the other hand, the use of a dataset that includes more than one 

field negatively affects the accuracy of the model. 

 

 

Figure. 7: Summary of code syntax, semantics, structural and domain information 

   

6. Conclusion 

 

This literature review aim is to determine the state of the software defect prediction research by 

thoroughly examining the developments in published works over the past five years. We provide valuable 

insights for both practitioners and researchers on the learning field, algorithms, performance measures, 

method types, data sources, datasets, programming languages used in datasets, tools, code syntax 

information, code semantics information, code structural information and domain information. We 

believe this literature review provides the research community with clarity, understanding and motivation 

for further advancement. 

 

Major findings include that machine learning is extensively used compared to deep learning despite its 

superior results. Notably, data mining was used very little compared to other fields of learning. We 

discovered that the most widely employed performance metrics are AUC, F-measure, Recall, Accuracy 

and Precision. It turns out that the just-in-time defect prediction is the least used type compared to the 

others. We concluded that the most widely used data sources are PROMISE, NASA, ReLink and AEEEM 

and summarized all datasets that were used in the included papers. It was clear that Java, C, and C++ were 

the most often discovered programming languages in the datasets. On the other hand, we noticed that 

there are very popular programming languages such as Python, C#, R and JavaScript that were rarely 

used despite their importance and spread. We concluded that the most used tools are Python 

scripts/libraries, Weka, MATLAB and Scikit Learn tool. We found that domain information was not much 

used despite its importance. 

 

Suggested future directions are as follows. Researchers are advised to direct their efforts to the fields of 

deep learning and data mining. Secondly, employ the well-known performance metrics mentioned 
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previously for credible assessment. Thirdly, pay more attention to the just-in-time defect prediction due 

to the scarcity of papers that use it. Fourthly, create datasets that include neglected -although popular- 

programming languages such as Python, C#, R and JavaScript. Finally, use domain information because 

it didn’t receive its eligible attention. 
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