
IJICIS, Vol.23, No.3, 31-58

DOI: 10.21608/ijicis.2023.200737.1261

*Corresponding Author: Khaled S. Shebl

Information Systems Department, Faculty of Computer and Information Science, Ain Shams University, Cairo, Egypt

Email address: khaled.said@cis.asu.edu.eg

International Journal of Intelligent

Computing and Information Sciences

SOFTWARE DEFECT PREDICTION APPROACHES REVISITED

Khaled S. Shebl *

Information Systems,

Faculty of Computer and Information

Sciences, Ain Shams University,

Cairo, Egypt

khaled.said@cis.asu.edu.eg

Yasmine M. Afify

Information Systems,

Faculty of Computer and Information

Sciences, Ain Shams University,

Cairo, Egypt

yasmine.afify@cis.asu.edu.eg

Nagwa Badr

Information Systems,

Faculty of Computer and Information

Sciences, Ain Shams University,

Cairo, Egypt

nagwabadr@cis.asu.edu.eg

Received 2023-03-17; Revised 2023-08-03; Accepted 2023-08-14

Abstract: A crucial field in software development and testing is Software Defect Prediction (SDP)

because the quality, dependability, efficiency, and cost of the software are all improved by forecasting

software defects at an earlier stage. Many existing models predict defects to facilitate software testing

process for testers. A comprehensive review of these models from different perspectives is crucial to help

new researchers enter this field and learn about its latest developments. Algorithms, method types,

datasets, and tools were the only perspectives discussed in the current literature. A comprehensive study

that takes into account a wide spectrum of viewpoints hasn't yet been published. Examining the

development and advancement of SDP-related studies is the goal of this literature review. It provides a

comprehensive and updated state-of-the-art that satisfies all stated criteria. Out of 591 papers retrieved

from 6 reputable databases, 73 papers were eligible for analysis. This review addresses relevant research

questions regarding techniques & method types, data details, tools, code syntax, semantics, structural

and domain information. Motivation to conduct this comprehensive review is to equip the readers with

the necessary information and keep them informed about the software defect prediction domain.

Keywords: Software Defect Prediction, Software testing, Solve class imbalance issue, Feature selection,

Machine learning.

1. Introduction

With the tremendous technological development, applications usage has become inevitable.

Unfortunately, the larger number of applications, more issues have been detected. Predicting these issues

at an early stage is important because not all application fields can tolerate the presence of issues in their

live applications. For example, the presence of issues in applications related to the medical field may lead

to deaths and the presence of issues in applications related to the space field may lead to a national disaster.

Programmers employ a wide range of tools during the software development process, such as task

management, bug tracking, and version control systems. For their usage, there are various open-source

https://ijicis.journals.ekb.eg/

mailto:khaled.said@cis.asu.edu.eg
mailto:yasmine.afify@cis.asu.edu.eg
mailto:nagwabadr@cis.asu.edu.eg

32 Khaled S. Shebl et al.

and commercial software solutions. In addition, several online services are developed to satisfy these

requirements [1].

One of the main difficulties in programming language research and software development is prediction

of defects, a crucial step in raising the quality and dependability of software. Finding flawed source code

with great accuracy is a significant issue in this domain. A lot of methods have been offered throughout

the years to the challenging problem of creating defect prediction models. [2].

Early reviews of Software Defect Prediction in the literature were constrained to debates on SDP from a

dataset perspective, an algorithmic perspective, or a method type perspective. To the authors' knowledge,

a thorough study that addresses several perspectives has not yet been published. In this paper, an in-depth

review is proposed with comprehensive comparison on cornerstone perspectives, which include: recency,

techniques and method types, data details, tools, code syntax, semantics, structural and domain

information. This paper includes a recent and extensive review of the studies associated with SDP that

combines all criteria mentioned above to serve as guidance for researchers toward this field of study.

Systematically examining 73 papers, this review addresses the following research questions:

• Q1: Is SDP a hot research field?

• Q2: What is the most widespread learning field, algorithms, metrics, and method types in SDP?

• Q3: What are the most common data sources, datasets distributions and used languages in SDP?

• Q4: What are the dominant tools used in SDP field?

• Q5: How popular are code syntax, semantics, structural and domain information?

The structure of this review is as follows. Section 2 shows the major differences between our paper and

other review papers. Section 3 explains the review methodology and inclusion/exclusion criteria. Section

4 presents details on the included papers. Section 5 elaborates on answers to the motivating research

questions. Finally, section 6 concludes the review.

2. Related Work

This section covers other recent review papers in the Software Defect Prediction field.

The authors of [3] compared the effectiveness of data mining, machine learning, and deep learning

techniques in order to predict both cross-project and within-project defects. They looked at the many

kinds of empirical comparison and validation measures. They emphasized the application of instance

filtering and attribute selection during dataset pre-processing to get better outcomes. They investigated

the most widely used datasets and comparison standards for SDP. They chose 68 primary research papers,

summarizing their characteristics based on datasets, methods, and performance metrics. They evaluated

the effectiveness of models for predicting software defects using data mining, machine learning, and deep

learning techniques.

The authors of [4] discussed and compared several research studies and systems that use Logistic

Regression. They identified and categorized measuring techniques, including metrics, features,

parameters, classifiers, accuracy, and data sets. Additionally, to show how effective their approach is,

their obstacles, risks, and limitations were listed. Next, this review-based study made distinctions between

several existing systems based on six fundamental measurement criteria and statistically analyzed them.

SOFTWARE DEFECT PREDICTION APPROACHES REVISITED 33

It also illustrated the difficulties associated with current methods, highlighting the need for an autonomous

and successful defect-based prediction system built on a foundation of classifiers.

A systematic literature review was conducted by the authors of [5] to assess the use of machine learning

for predicting mobile application defects. In order to address nine questions, they identified 47

publications from scientific databases that concentrated on mobile defect prediction models and evaluated

them in a variety of ways. Publications that did not present any empirical findings and were not directly

relevant to the creation of the mobile defect prediction model were removed. They found problems and

gaps in the literature and proposed fixes. According to datasets, platforms, machine learning algorithms,

machine learning types, validation approaches, evaluation metrics, software metrics, the best deep

learning algorithms and machine learning, gaps, and challenges, the chosen publication was categorized,

and the associated findings were presented.

In order to fully understand current SDP-related methodologies using DL, the authors of [6] aimed to

synthesize literature on SDP using DL, including measurements, models, techniques, datasets, and

achievements. They also compared the performance of deep learning models with that of machine

learning models in classifying software defects. They offered a sample of 63 primary studies conducted

between 2010 and 2021 that met the standards for reporting rigor (quality score >= 4.5) as determined by

the quality evaluation criteria. They provided a full SLR (quantitative and qualitative synthesis) of the

state-of-the-art in SDP by combining data from those 63 rigorous trials with DL. They published a meta-

analysis that contrasted the performance of DL and ML in SDP, split down by research and dataset, for a

sample of 19 primary studies that met the requirements for the MA quality evaluation. They used both

fixed and random effects analyses, as well as presented differences between papers, to confirm the validity

of the meta-analysis.

A thorough literature review of Just-In-Time Software Defect Prediction (JIT-SDP) was released by the

authors of [7]. Their objective was to provide a thorough overview of the most recent developments in

JIT-SDP, covering modeling approaches, data preparation and data sources, dependent and independent

variables, performance evaluation. They conducted a meta-analysis of earlier studies and offered a

systematic review of 67 JIT-SDP investigations. They also described best practices for each stage of the

JIT-SDP process.

As shown in Table 1, related review papers only focused on a few perspectives over a long-time span

(about 10 years), while our work considered more perspectives on a large number of relevant research

works over a short time span (only 5 years from 2018 to 2022) with the aim of focusing on and discussing

the most recent trends. In our work, the included perspectives are learning field, algorithms, performance

measures, method types, data sources, datasets, programming languages used in datasets, tools, code

syntax information, code semantics information, code structural information, and domain information.

3. Methodology

The methodology used is explained in this section. Criteria for inclusion/exclusion, the procedure and the

obtained results are presented in the following subsections.

Table 1 Related work overview

34 Khaled S. Shebl et al.

Review papers Number of included papers Time span

1. [3] 68 2010–2021

2. [4] 22 2012-2020

3. [5] 47 2010-2020

4. [6] 19 2010-2021

5. [7] 67 2000-2021

6. Our paper 73 2018-2022

3.1. Procedure

Software defect prediction is the foundation for this comprehensive review. The key term "Software

Defect Prediction" was used in a thorough search of six pertinent databases: ACM Digital Library,

Springer, ScienceDirect, IEEE Xplore, MDPI, and Wiley. These databases were used due to their

reputation. Database filters were utilized to screen the papers.

The retrieved papers were assessed for adherence to the inclusion requirements. First, all titles and

abstracts of the publications were reviewed to check if they complied with these requirements. Papers

that passed the first round of screening were downloaded and stored according to the name of the source

database. Afterwards, we re-checked all research papers through the body and conclusion again to make

sure they meet this review's criteria. Keeping the research questions in mind, the related papers was

thoroughly researched to extract the necessary information from the qualified papers, namely: 1)

publication year; 2) paper purpose: solve class imbalance issue, feature selection, propose a new

approach, or edit an existing approach in software defect prediction ; 3) algorithms and methods; 4) field

of learning: machine learning, deep learning or data mining; 5) datasets used in training and testing; 6)

dataset source, such as: PROMISE or NASA; 7) programming languages used in datasets; 8) method

types include: Just-in-Time Software Defect Prediction, Within-Project Defect Prediction, and Cross-

Project Defect Prediction.; 9) evaluation measure, such as: Recall, F-measure, Accuracy, Precision, or

AUC; 10) tools; 11) approach used to address the unbalanced dataset issue if the paper's goal is to address

the problem of class imbalance, such as: over-sampling or under-sampling; 12) was source code used in

the paper? Yes or No; 13) was code semantics information used in the paper? Yes or No; 14) Was

structural information used in the paper? Yes or No.

3.2. Criteria for inclusion and exclusion

The following inclusion criteria were used to find relevant studies: 1) any publication, except systematic

reviews, that discusses how to address class imbalance issue, feature selection, propose a new approach,

or edit an existing approach in software defect prediction; 2) published between January 2018 and April

2022, considering the tremendous speed of change in the area of SDP over the previous five years, even

when compared to the rate of change since the invention of the Internet; 3) papers from journals,

conferences, or workshops. 4) written in English with no regard to location; 5) not duplicated. Outline of

the outcome of the inclusion methodology is presented in Table 2.

Table 2 Summary of selected papers from databases

SOFTWARE DEFECT PREDICTION APPROACHES REVISITED 35

Database
Number of

retrieved papers

Number of included

papers

Number of excluded

papers

1. IEEE Xplore 226 22 204

2. Springer 81 18 63

3. ScienceDirect 218 11 207

4. ACM Digital Library 23 9 14

5. MDPI 26 7 19

6. Wiley 17 6 11

 Total 591 73 518

3.3. Results

There are 592 papers in the search results; however, after the first round of assessment, only 319 were

downloaded. 73 papers met the inclusion criteria for analysis after the second round of filtration. The

process flow diagram for the systematic review is shown in Figure. 1.

Figure.1: Systematic review process flow

4. Literature Review

In this section, details are presented on the 73 papers included in this review. Reviewed research papers

are categorized according to the purpose of the paper into 3 types: 1) solve class imbalance issue; 2)

feature selection; 3) propose a new approach or edit an existing approach in software defect prediction. It

was noticed that the words "prediction" and "detection" were used interchangeably in the review papers.

The following subsections discuss the papers under each category. Statistics for the three goals are shown

in Table 3.

Table 3 Literature classified according to its purpose

Purpose
Solve class

imbalance issue
Feature selection

Edit an existing approach, or

propose a new approach

Research papers [8]–[28] [29]–[46] [26], [28], [37], [40], [45]–[80]

Number of papers 21 18 40

Distribution ratio 29% 25% 55%

4.1. Solve Class Imbalance Issue

36 Khaled S. Shebl et al.

Datasets for SDP are frequently quite unbalanced, which makes it challenging for classifiers to detect

defective occurrences. Numerous strategies have recently been put up to deal with this issue. The methods

of Over- sampling and Under- sampling are the most popular methods to resolve the problem of class

inequality and increase prediction performance. Over-sampling techniques add new synthetic instances

to the minority class or duplicate existing ones, whereas under-sampling techniques eliminate or combine

instances in the majority class.

There are 21 research papers that discuss the class imbalance issue, 13 out of 21 use over-sampling and

6 out of 21 use under-sampling technique.

When using a dataset for the software prediction study that focuses on the minority subset, to maximize

performance and advantages, the authors of [8] proposed a new model by combining the heterogeneous

stacking ensemble with SMOTE technique. To enhance defect prediction, the authors of [9] proposed a

new model that incorporates ensemble imbalance learning and class overlap minimization using the

AdaBoost mechanism, multiple under-sampling, and the neighbor cleaning technique. In order to produce

more fictitious examples of the flawed classes, the authors of [10] developed an innovative hybrid

oversampling ensemble technique. The technique combines Fuzzy Based Feature Instance Recovery,

Majority Weighted Minority Oversampling, and random oversampling to produce an ensemble classifier.

The authors of [11] introduced MAHAKIL, a brand-new and effective synthetic oversampling method

depending on datasets of software failures and inheritance chromosomal theory.

To resolve the concerns of class overlap and inequality, the authors of [12] suggested an a more effective

K-Means clustering cleaning method (IKMCCA). To reduce processing time and increase forecast

accuracy, the authors of [13] suggested model concentrate on balancing the class of datasets. It is made

up of two methods: correlation feature selection method and revised under-sampling methodology.

The authors of [14] suggested a hybrid multi objective cuckoo search under-sampled SDP method to

handle the class imbalance concern and parameter selection of Support Vector Machine. By taking into

account the distribution features of the datasets, a new method for reducing class imbalance approach was

developed to balance the imbalanced dataset’s defect and non-defect instances. [15]. The authors of [16]

suggested a novel approach to quantify the legitimacy of synthetic samples depending on their distribution

by giving each synthetic sample a credit component. Additionally, they suggested a weight update

approach to direct base classifiers' attention towards real examples and highly credible fake examples. To

overcome the problem of class imbalance, the authors of [17] used SMOTE based on neural networks

where SMOTE and neural networks were combined, the neural networks' and SMOTE's hyperparameters

are all randomly modified via random search.

The creators of [18] presented a method that uses hybrid sampling, which mixes over-sampling and under-

sampling techniques. Over-sampling for minority classes employs k-means clustering of samples and

SMOTE generation of synthetic data based on the clustering outcome's safe zones. The possibility that

each sample will be misclassified, and its instance hardness value are obtained for the majority class using

the logistic regression classifier in the under-sampling method. The samples that have instance hardness

values below a certain level are then eliminated from the databases. The authors of [19] proposed the

Complexity based Over-sampling Technique (COSTE), which creates synthetic instances by combining

pairs of flawed instances with similar complexity. COSTE boosts data diversity, keeps prediction models'

ability to identify flaws, and considers the variable testing effort required in various instances. To address

the unequal distributions in the SDP, the authors of [20] introduced a mechanism for generating samples

SOFTWARE DEFECT PREDICTION APPROACHES REVISITED 37

for the minority class from a high-dimensional sampling space using random over-sampling. Two

restrictions are applied to this mechanism to provide a reliable method for creating new synthetic samples,

which involves narrowing the range of random oversampling and differentiating the majority-class

samples in key areas.

For efficient defect prediction using SVMs, a unique filtering technique (FILTER) was suggested in [21].

The authors of [22] presented a new over-sampling method that generate synthetic samples using a genetic

algorithm. The concept of weighted complexity was suggested by the authors of [23]. Each sample's

weighted complexity is determined by taking into account the weights of its many condition variables.

Based on the weighted complexity, they proposed a new under-sampling technique called WCP-

UnderSampler and used it to forecast software defects. Neighborhood based Under-Sampling (N-US)

algorithm is a novel solution that was suggested in [24] to deal with the issue of class imbalance. The

authors of [25] conducted this study to look into the connection between the chosen instances' distance

and the effectiveness of SMOTE-based approaches. Based on self-organizing data mining, the authors of

[26] suggested a new technique for SDP. This technique can show that software metrics and defects are

related causally. In [27], they proposed a classification model that blends the ensemble learning technique

XGBoost with SMOTE-Tomek sampling. For Cross-Project Defect Prediction, the authors of [28]

introduced a new algorithm called (TSboostDF) based on transfer leaning that takes into account class

imbalance and the transfer of knowledge.

After analyzing recent research papers dealing with the issue of class imbalance, it is clear that the

majority of researchers use the Synthetic Minority Oversampling Technique (SMOTE) to solve this

problem.

4.2. Feature Selection

In order to avoid overfitting, increase accuracy, and save training time, feature selection is the procedure

of deleting undesired and unnecessary properties from high-dimensional datasets. There are 18 research

papers discussing feature selection.

By combining wrapper and filter techniques, the authors of [31] suggested two brand-new hybrid software

defect prediction models to pinpoint the important metrics. A feature grouping-based feature selection

technique based on the hybrid Wrapper and Filter framework was proposed by the authors of [29]. The

authors of [30] proposed a new nonlinear manifold detection model in order to reduce the dimensions of

high dimensional datasets while increasing prediction accuracy and software quality. The authors [32]

proposed a novel Nonlinear Manifold Detection Model to find the best attributes, eliminating any

unnecessary, duplicate, and undesirable attributes in the process.

Local tangent space alignment SVM (LTSA-SVM) technology was used by the creators of [33] to offer

a novel model. K-nearest neighbor, support vector machine, and naive bayes classifiers, as well as the

firefly algorithm, were utilized in [34] to categorize the features that were chosen. The authors of [35]

suggested a framework that builds the prediction model using the Naive Bayes classification method and

PCA for dimensionality reduction. The authors of [36] suggested a hybrid preprocessing strategy in which

feature selection is followed by iterative partitioning filtering.

The authors of [37] built the improved metaheuristic search based on feature selection method called

(EMWS) by combining a distinct complementing simulated annealing approach with the recently

38 Khaled S. Shebl et al.

developed whale optimization algorithm, which may successfully choose fewer but closely related

representative features. In order to overcome the high dimensionality and filter rank selection issues in

SDP, a new adaptive rank aggregation-based ensemble multi-filter feature selection (AREMFFS)

technique was presented in [38]. By utilizing the island BMFO (IsBMFO) paradigm, an effective binary

form of MFO (BMFO) was suggested in [39]. In [40], the research of SDP model based on LASSO-SVM

was the main objective, and the issue of the majority of SDP models' subpar prediction accuracy was

raised. For managing the dataset's dimensionality issue and enhancing classification performance, the

authors of [41] presented a feature extraction technique called FLDA.

The authors of [42] trained a model for just-in-time defect prediction based on random forest classification

to increase the prediction effectiveness of just-in-time defect prediction technology. In [43], the authors

proposed a feature selection and transfer learning-based method for SDP with metric compensation. An

SDP methodology based on heterogeneous feature selection and nested-stacking was suggested by the

authors of [44]. A unique SDP method based on PCA and RVFL was proposed by the authors of [45].

The authors of [46] suggested a hybrid classifier that uses a bug tracker application to track and collect

defect metrics while gaining semantic knowledge of the traits of the errors by employing an ontology of

software flaws.

After analyzing the recent research papers dealing with feature selection, we found that most researchers

use Chi-square, Information Gain (IG), Principal Component Analysis (PCA) and LASSO method to

choose the important features.

4.3. Edit an Existing Approach or Propose a New Approach

There are 40 research papers which propose a new approach or edit an existing approach to predict

software defects.

To improve software defect prediction, a novel technique dubbed node2defect employs the recently

announced network embedding method node2vec to automatically learn to encapsulate dependency

network structure into low-dimensional vector spaces was proposed by the authors of [47]. In order to

distinguish between software entities that are flawed and those that are not, the creators of [48] created a

novel supervised classification technique called HyGRAR. This technique incorporates gradual relational

association rule mining and ANN. On the basis of atomic class association rule mining (ACAR), the

authors of [49] proposed a unique supervised method for SDP. In [50], the authors intended to offer a

comprehensive and successful solution for both CSDP and WSDP issues. The semi supervised dictionary

learning method was introduced, and a cost-sensitive kernelized semi supervised dictionary learning

(CKSDL) strategy was suggested. Deep learning, a potent representation-learning technique, was

suggested by the authors of [51] as a way to automatically learn applications semantic representations

from code modifications and the files source code. A unique defect prediction model called CAP-CNN

(Convolutional Neural Network for Comments Augmented Programs), which is a deep learning model,

was proposed in [52]. It automatically embeds code comments in producing semantic features from the

source code for SDP.

In [53], authors discussed their practical implementation of a novel deep learning tree-based defect

detection model. This model was created using a Long Short Term Memory network with a tree-structure,

which perfectly correlates to the Abstract Syntax Tree (AST) representation of source code. A system for

determining whether a program module includes bugs was proposed by the creators of [54] and is based

SOFTWARE DEFECT PREDICTION APPROACHES REVISITED 39

on Deep Belief Network Prediction Model (DBNPM). The PROMISE Source Code (PSC) dataset was

created by the authors of [55] to expand the CNN research's initial dataset, which they called the

Simplified PROMISE Source Code dataset. Then, they suggested an enhanced CNN method for WPDP.

The authors of [56] presented a unique weighted naive Bayes strategy for SDP based on information

diffusion. The authors of [57] presented a method called Defect Prediction through Attention Mechanism

(DP-AM) to fully utilize the semantics and static metrics of applications. The authors of [58] introduced

Seml, a unique framework for defect prediction that combines word embedding and deep learning

techniques.

Density-percentile-average (DPA), a metric that was suggested by the authors of [59], was utilized as the

goal of model optimization on the training set. Then, they developed models using logistic regression and

calculated the logistic regression coefficients using the differential evolution algorithm. Without the need

of feature-extraction tools, the creators of [60] suggested an end-to-end framework that could directly

obtain prediction results for programs. In order to achieve this, they initially extracted visual attributes

like image featured from programs using the self-attention method, applied it to visualize programs as

images, used transfer learning to lessen the disparity in sample distributions between projects, and then

fed the image into a pre-trained, deep learning model for defect prediction. In [61], the authors presented

a novel method for predicting the quantity of software flaws using deep learning techniques. They began

by doing data normalization and log transformation on a publicly accessible dataset. They next did data

modelling. Third, they used a deep neural network-based model that was specifically created to receive

the modelled data and forecast the quantity of flaws. The SDP techniques operated at units, like a class

or module, which made it more difficult for developers to pinpoint the issue.

The authors of [62] proposed a novel method called Statement-Level Software Defect Prediction Using

Deep-Learning Model (SLDeep) to address this problem. Using a long short-term memory (LSTM)

network, the authors of [64] were able to automatically extract the semantic and contextual elements from

the source code. The Convolution Neural Network (CNN) was employed in [66] to identify the software

components that contain defects. A collection of software modules from five specific datasets were

employed in this study using static code metrics. SDP model based on program slice and deep learning

was proposed by the creators of [67]. They used the Gated Recurrent Unit (GRU) to create features and

retrieved the program slice based on the system dependence graph. The authors of [68] proposed a brand-

new technique called ALTRA that makes use of both active learning and TrAdaBoost.

A unique method for SDP of unlabeled datasets using modified objective cluster analysis (OCA) was

proposed in [63]. In [69], Domain adaptation (DA) is implemented using kernel twin SVMs (KTSVMs)

to fit the distributions of training data for various applications. Additionally, KTSVMs with DA function

(also known as DA-KTSVMs) are employed as the CPDP model. The authors of [70] introduced a new

strategy for drift detection and adaptation based on paired learner that adjusts concepts dynamically by

updating one of the pair's learners. A new paradigm for defect prediction based on hierarchical neural

networks (DP-HNN) was proposed by the creators of [71]. The enormous file-level AST was divided into

many subtrees according to certain AST nodes important to the SDP job, utilizing the AST's hierarchical

structure.

In order to forecast software problems, the developers of [72] suggested an approach that incorporated

deep learning techniques and word embedding. They would map tokens using an abstract syntax tree

derived from the source code. To better reduce the class overlap issue without modifying hyperparameters

in SDP, The class overlap cleaning based on the radius technique was presented by the authors of [73].

40 Khaled S. Shebl et al.

To enhance defect prediction performance on CPDP, the authors of [74] set out to jointly learn statement

level trees (SLT) and reduce data distribution differences using maximum mean discrepancy (MMD). A

novel code graph model called Augmented-CPG was put forth in [75]. A defect region candidate

extraction strategy specific to the defect type was suggested based on this representation. Key information

can be embedded into end-to-end learning software modules' code semantics using the SDP technique

that the authors of [76] presented. This method was based on the Transformer model and was entirely

dependent on self-attention mechanisms.

The authors of [77] aimed to develop a correlation based neural network model for detecting defects in

software applications. Using modelled data, a novel correlation-based modified long short-term memory

(CM-LSTM) was introduced to estimate the software defects in software modules. A solution to eliminate

the unfavorable confounding effects of size metric was put forth by the creators of [78]. A spotted hyena

optimizer classifier used by the creators of [65] to anticipate problems in cross-projects. For the purpose

of finding the most effective classification rules, confidence and support were used as a multipurpose

fitness function. A fresh methodology was proposed by the authors of [79] based on a comprehensive

feature set that includes software metrics for both products and processes that were gathered from

software system commits and their history. A form of the deep temporal convolutional network based on

the layers of hierarchical attention was also incorporated into the algorithm in order to carry out the defect

prediction. Semantic feature based on BERT and bidirectional long short-term memory, which captured

the code semantics, were used in the SDP model that authors of [80] provided to forecast software defects.

Notably, six papers [26], [28], [37], [40], [45], [46] combine more than one category, such as (solve class

imbalance issue & propose a new approach or edit an existing approach) or (feature selection & propose

a new approach or edit an existing approach), already presented in previous categories.

After analyzing the recent research papers that propose a new approach or edit an existing approach, we

found that the most used algorithms are Long Short-Term Memory (LSTM), Convolutional Neural

Network (CNN), Graph Neural Network (GNN), Artificial Neural Network (ANN), Recurrent Neural

Networks (RNN), Back Propagation (BP) neural network, Logistic Regression, Random Forrest, Naïve

Bayes and A-priori.

5. Discussion

In this section, we elaborate on our insights and findings in software defect prediction research field. The

following subsections discuss different perspectives to answer the previously mentioned research

questions. Subsection 5.1 answers Q1: Is SDP a hot research field? Subsection 5.2 answers Q2: What is

the most widespread learning field, algorithms, metrics, and method types in SDP? Subsection 5.3

answers Q3: What are the most common data sources, datasets distributions and used languages in SDP?

Subsection 5.4 answers Q4: What are the dominant tools used in SDP field? Subsection 5.5 answers Q5:

How popular are Code Syntax, Semantics, Structural and Domain Information?

5.1. Research Field Recency

The distribution of research papers according to the publication year is shown in Figure. 2. Notably, SDP

is a very hot research topic. 18 papers were published in 2021. During only 4 months in 2022. (From

January 2022 to April 2022), 16 research papers have been published, showing a clear rise in scholarly

attention.

SOFTWARE DEFECT PREDICTION APPROACHES REVISITED 41

Figure. 2: Distribution of reviewed papers according to publication year

5.2. Techniques, Performance Metrics and Method Types

Techniques, performance metrics and types of methods are covered in this section to help the researchers

learn the most common areas of learning, algorithms, performance measures, along with statistics about

method types. The details will be discussed in the following two subsections.

5.2.1. Techniques and Performance Metrics

Identifying the algorithms used is crucial for any researcher interested in the field of predicting software

flaws. Realizing the most common and least common types would help him in deciding on conducting

research on which type. Our review includes research papers in different areas of learning such as machine

learning, deep learning, and data mining. After analyzing the included papers, we noticed that 64% of the

papers fall into the field of machine learning, 31% of the papers fall into the field of deep learning, and

5% of the papers fall into the field of data mining. Therefore, we encourage researchers to conduct more

research in the field of deep learning, especially that work in the field of deep learning has better

performance metrics values compared to that in the field of machine learning and data mining. Moreover,

we encourage researchers to pay more attention to the field of data mining because the number of research

works in this field is very few compared to the other fields.

The use of performance measures is a must to evaluate the work and determine whether the research paper

has good or bad results compared to benchmark approaches. The performance measures used vary

according to the field of research. After conducting a comprehensive analysis on the included papers, we

found that five measures dominate the evaluation of predicting software defects, namely: F-measure,

AUC, Recall, Accuracy and Precision. Notably, 67% of papers used F-measure, 49% of papers used AUC,

44% of papers used Recall, 41% of papers used Accuracy, and 36% of papers used Precision.

42 Khaled S. Shebl et al.

Details regarding the field of learning, algorithms and performance metrics used in reviewed papers are

shown in Table 4.

Table 4 Techniques and performance metrics details

Paper
Field of

learning
Algorithms and techniques Performance metrics

[79]

Deep

Learning

Deep

Learning

Temporal Convolutional Networks (TCN network) Accuracy, F-measure

[51] Deep Belief Network (DBN), ASTs, bag-of-words Precision, Recall, F-measure

[61] Deep Neural Network-based model

Mean Square Error (MSE),

Squared correlation

coefficient

[55]
Improved CNN model, ASTs, Word Embedding, Skip-gram

model

F-measure, G-measure, and

MCC

[71]
Hierarchical Neural Network (HNN), Bidirectional LSTM (Bi-

LSTM) algorithm, ASTs, Word Embedding
MCC, AUC

[57]

Defect Prediction through Attention Mechanism (DP-AM),

ASTs, Recurrent Neural Network, self-attention

mechanism, global attention mechanism, Bi-LSTM, Word

Embedding

 F-measure

[53] Tree-structured LSTM network (Tree-LSTM), ASTs
F-measure, Precision, Recall,

AUC

[60]
Deep Transfer Learning (DTL) model based on AlexNet network

with self-attention mechanism and transfer learning
F-measure

[62] Long Short-Term Memory (LSTM), ASTs
Accuracy, Recall, Precision,

F-Measure

[67]
System Dependence Graph (SDG), leverage Gated Recurrent

Unit (GRU), ASTs, Word2vec, CBOW
Precision, Recall, F-measure

[52]
CAP-CNN (Convolutional Neural Network for Comments

Augmented Programs), Word2vec model
F-measure

[58]
ASTs, Word Embedding, a Continuous Bag of Words (CBOW)

model, LSTM, Word2vec2, CBOW
Precision, Recall, F-measure

[80]

Bidirectional Long Short-Term Memory (BiLSTM), Data

augmentation technique, BERT-based semantic feature, Attention

mechanism, ASTs

Precision, Recall, F-measure

[74]

Statement semantic learning and maximum mean discrepancy,

Word Embedding, Word2Vec, Bi-GRU model,

Stochastic Gradient Descent (SGD) algorithm, ASTs.

AUC

[54] Deep Belief Network, BP algorithm
Accuracy, Precision, Recall,

F-measure

[64]
Long Short-Term Memory (LSTM), ASTs, Word Embedding

technique
Precision, Recall, F-measure

[77] Correlation-based modified LSTM

Precision, Accuracy, True

Positive Rate (TPR), True

Negative Rate (TNR), False

Positive Rate (FPR), F-

measure, AUC-ROC

[72]
LSTM, ASTs, Word Embedding, Continuous Bag of Words

(CBOW), Word2Vec

Accuracy, Precision, Recall,

F-measure

[75]

Augmented Code Property Graphs (Augmented-CPGs),

Word2Vec, Graph Neural Network (GNN), ASTs, Word

Embedding,

Word2Vec

Accuracy, Recall, Precision,

F-measure, AUC

SOFTWARE DEFECT PREDICTION APPROACHES REVISITED 43

[76]
 Logistic Regression, CNN, Transformer model and Softmax

Neural Network, ASTs, word embedding
F-measure

[66] CNN Accuracy

[46] Ontology, GRU model

Precision, Recall, Accuracy,

false negative rate (FNR), F-

measure

[37]

Deep

Learning +

Machine

Learning

Whale Optimization Algorithm (WOA), Kernel Extreme

Learning Machine (KELM) for new approach to improve

performance using Deep Learnin, simulated annealing (SA) for

feature selection using Machine Learning, Convolutional Neural

Network (CNN)

F-measure, MCC, G-

measure, AUC

[59]

Machine

Learning

A new method called DEJIT based on

differential evolution algorithm,

Logistic Regression

Popt, Accuracy

[13]

Modified Under-Sampling method (MUS) and a Correlation

Feature Selection (CFS) method, Z-score method, Tomek link

(TLink) technique, Greedy Forward Selection (GFS) algorithm.

F-measure, Processing time

(s)

[42]

LIME (Local Interpretable Modelagnostic Explanations)

Interpretability technique.

SP (Sub-modular Pick) LIME (SP-LIME).

Accuracy, Recall, F-

measure, AUC

[18] K-Means, SMOTE, Logistic Regression Accuracy

[16] Anovel Credibility-based Imbalance Boosting (CIB) method
AUC, F-measure, Adjusted

F-measure (AGF), MCC

[56]
Information Diffusion Model (IDM), Weighted Naïve Bayes

(WNB)
F-measure

[22] Genetic Algorithm (GA)
Accuracy, Recall, False

Alarm Rate

[45]
Random Vector Functional Link (RVFL), Principal Component

Analysis (PCA), Randomized Neural Networks
AUC–ROC, F-measure

[12]
Improved K-Means Clustering

Cleaning (IKMCCA)
balance, Recall, AUC

[50]

Semi-supervised dictionary learning technique, sensitive

kernelized Semi-supervised dictionary learning (CKSDL)

approach

Recall, Precision, F-measure,

AUC

[44]

Nested-Stacking, heterogeneous feature selection., CatBoost,

LightGBM, AdaBoost, Random Forest, MLP, Gradient Boosting

Decision Tree, Meta-classifier of Logistic Regression.

Precision, Recall, F-measure,

AUC

[69]

Improved Quantum Particle Awarm Optimization algorithm

(IQPSO), DA function, kernel twin support vector machines

(KTSVMs)

F-measure, AUC

[63] Modified Objective Cluster Analysis (OCA) algorithm, Z-score
Precision, Recall, F-measure,

AUC

[14]

Hybrid Multi- Objective cuckoo search Under Sampled SDP

model based on SVM (HMOCS-US-SVM), K-Means,

Neighborhood Clearance, and NearMiss-2

Probability of Detection,

False Positive Rate, G-mean

[20]
Radius Synthetic Minority Over- sampling Technique

(RSMOTE)
Recall, Precision, F-measure

[15]

An innovative Class Imbalance Reduction (CIR) algorithm for

creating new samples is based on determining the centroid of all

attributes of minority-class samples.

Accuracy, Precision, Recall,

F-Measure, Specificity, G-

mean

[68]

Active Learning, Tradaboost, Weighted variant of Support Vector

Machine (WeightSVM),

Burak filter

AUC, F-measure

[11]
MAHAKIL, a novel and efficient synthetic oversampling

approach based on the chromosomal theory of inheritance
Precision, Recall, F-measure

44 Khaled S. Shebl et al.

[43]

Machine

Learning

Pearson feature selection method, transfer learning technique, a

metric compensation method called peUpMeCom consists of two

main phase (1) Pearson coefficients (2) Upgrade metric

compensation (upMeCom)

AUC, F-measure

[28]
Transfer-leaning algorithm (TSboostDF), Bernoulli Sampling

based on Weight (BSW), cumulative method

F-measure, G-mean, MCC,

balance

[23] WCP-UnderSampler based on weighted complexity Accuracy, F-measure, AUC

[29] FCBF-based grouping algorithm, PSO algorithm AUC

[47] Node2Vec F-measure, AUC

[8]

SMOTE technique with the heterogeneous stacking model

composed by three base classifiers (Naïve Bayes, Multilayer

Perception, J48) and a meta classifier (Boosting or Bagging).

TP Rate, FP Rate, Precision,

Recall, F-measure,

MCC, ROC Area, PRC Area

[30]

Nonlinear Manifold Detection Techniques (ISOMAP (Isometric

Feature Mapping), LLE (Locally Linear Embedding), Diffusion

Maps, Laplacian Eigen Maps, NPE (Neighborhood Preserving

Embedding), SPE (Stochastic Proximity Embedding), LPP

(Linearity Preserving Projection), L-ISOMAP (Landmark

ISOMAP))

Accuracy Percentage, F-

measure, AUC

[19] Complexity-based OverSampling TEchnique (COSTE)

AUC, balance, probability of

detection (pd), probability of

false alarms(pf), Norm

(Popt), Accuracy

[33]
Local Tangent Space Alignment SVM

(LTSA-SVM) algorithm

Accuracy, Precision, Recall,

F-measure

[70] Random Forrest, Paired Learners of Naïve Bayes. Accuracy, ROC, AUC

[38]

A new Adaptive Rank aggregation-based Ensemble Multi Filter

Feature Selection (AREMFFS).

Three filter FS methods: chi-square (CS), Relief (REF),

information gain (IG).

Accuracy, AUC, F-measure

[39]
Swarm intelligence algorithm.

Island-Based Moth Flame Optimization (IsMFO) Algorithm
Recall, Recall, G-mean

[21]
Support Vector Machines (SVMs), a novel Filtering technique

(FILTER)

ROC, AUC, Accuracy, F-

measure

[34] Firefly algorithm
F-measure, Recall, Precision,

Accuracy

[24] A new Neighborhood based Under- Sampling (N-US) technique. ROC, AUC, Accuracy

[40]
LASSO–SVM (Use LASSO method and Support vector machine

(SVM))

Accuracy, Precision, Recall,

F-measure

[9]
AdaBoost mechanism, Ensemble Random Under- Sampling

(ERUS), Neighbor Cleaning Learning (NCL)

G-mean, Probability of False

alarm (PF), Probability of

Detection (pd)

[35]
Principal Component Analysis (PCA) and Naïve Bayes

classification algorithm
Accuracy

[41]
Linear Discriminant Analysis by Fisher (FLDA) feature

extraction technique
Recall, AUC

[73]

Machine

Learning

Radius-based class Overlap Cleaning Technique (ROCT)

AUC, balance, Probability of

detection (pd), probability of

false alarm (pf)

[17]
Synthetic Minority Over-sampling Technique (SMOTE), Neural

Network (NN)
Recall, balance

[31]

Wrapper and filter techniques,

Support Vector Machines (SVM), Artificial Neural Network

(ANN), Maximum Relevance (MR) filter approach

Accuracy, AUC

[36] The Maximum Likelihood Logistic Regression (MLLR)
AUC, Accuracy, Precision,

Recall, F-measure

SOFTWARE DEFECT PREDICTION APPROACHES REVISITED 45

[32]

Nonlinear Manifold Detection (NMD), ISOMAP (Isometric

Feature Mapping), LLE (Locally Linear Embedding),

FASTMVU, D Maps (Diffusion Maps), NPE (Neighborhood

Preserving Embedding), SPE (Stochastic Proximity Embedding).

Correlation based Feature selection subset evaluator (CFs) along

with Chi-Squared attribute evaluator (Chi-Squared).

Accuracy, MAE, RMSE,

AUC

[10]

Random Over-Sampling (ROS), Majority Weighted Minority

(MWM), Fuzzy-Based Feature and Instance Recovery using

Information decomposition (FIDos), Random Forest (RF)

Accuracy, True Positive Rate

(TPR), False Negative Rate

(FNR), AUC, F-measure

[25] Improved SMOTUNED (that is a SMOTE-based technique)

AUC, balance, probability of

detection (pd), Probability of

false alarm (PF)

[78]
Causally Removing Negative Confound Effects Method

(CRNCEM)
Precision, Recall, F-measure

[27]
SMOTE-Tomek sampling and ensemble learning algorithm

(XGBoost)
Accuracy, F-Measure, AUC

[48]

Machine

Learning +

Data Mining

HyGRAR is a non-linear hybrid model that combines relational

association rule mining and artificial neural networks
 AUC

[26]

Data Mining

Self-Organizing Data Mining (SODM) algorithm, SMOTE

algorithm

Precision, probability of

detection (pd), probability of

false alarm (PF), F-measure,

AUC

[65] Spotted Hyena Optimizer (SHO) algorithm

F-measure, Sensitivity,

Recall, Precision,

Specificity, Accuracy

[49] Atomic Class-Association Rule Mining (ACAR), A-priori AUC

5.2.2. Method Types

The type of method indicates the relation between the target project that we want to predict its defects

and the source projects found in the datasets. Three method types exist:

• Cross-Project Defect Prediction (CPDP): is a procedure that uses data from other projects to

forecast defects in a target project.

• Within-Project Defect Prediction (WPDP): is a procedure that uses information from the same

project to forecast defects in a target project.

• Just-In-Time Defect Prediction (JITDP): is the process of predicting defects on a commit level.

As shown in Figure 3, method types are divided according to the field of learning. Noticeably, the number

of research papers that use cross-project defect prediction are similar to the number of research papers

that use within-project defect prediction across all types of learning, whether machine learning, deep

learning or data mining. On the other hand, the just-in-time defect prediction method always scores in

few numbers in all types of learning. Just-in-time defect prediction has not received its eligible scholarly

attention.

46 Khaled S. Shebl et al.

Figure. 3: Distribution of method types according to field of learning

5.3. Data Details

Data is one of the crucial components of any research field that uses machine learning, deep learning, or

data mining. The data mainly affects the model that is trained on this data. The greater the size and

accuracy of the data, the higher the efficiency of the model. In the following three subsections, we discuss

the data criterion from three perspectives, namely: data source, dataset, and programming language.

5.3.1. Dataset Source

There are many data sources used in predicting software defects. Knowing the data source that is used in

training and testing the model is important because the more data source is used, the more reliable it is.

After careful examination of the included papers, we found that 24 data sources exist. The four most

frequently used data sources are PROMISE, NASA, ReLink and AEEEM sorted from most to least

popular. Specifically, PROMISE has been used 48 times; NASA has been used 24 times; ReLink has

been used 9 times; AEEEM has been used 8 times. Details on these four sources along with the rest of

the data sources are shown in Figure. 4.

Since there are four data sources that are the most famous and have proven good results in predicting

software defects, we highly encourage researchers to use them for credible results.

5.3.2. Datasets

Researchers are looking for popular datasets so that they can train and test their models to prove their

efficiency and to compare their models with other researchers. By studying the datasets used in the

included research papers, we found that there is a large number of datasets. Moreover, each researcher

uses more than one dataset in his research. We summarized all datasets used in different research papers

in Table 5. The table includes four columns, the first column includes the name of the dataset, and the

second column includes references of the research papers that used this dataset. The third column includes

SOFTWARE DEFECT PREDICTION APPROACHES REVISITED 47

the number of research papers that used this dataset, and the fourth column shows the proportion of

research papers that made use of this dataset.

Table 5 helps new researchers to identify the most used datasets in training, testing, and comparing the

existing models, thus reducing the time required to select the datasets they will use in their research.

Figure. 4: Distribution of datasets sources

Table 5 Details of datasets

Dataset Papers Number

of

papers

Distribut

ion ratio

Camel [11]–[13], [15], [16], [18], [19], [22], [23], [25], [26], [37]–[39], [44], [45],

[47], [51]–[53], [57], [58], [60], [64], [67]–[69], [71]–[74], [80]

32 44%

Xalan [12], [15], [16], [18]–[20], [23], [25], [26], [28], [29], [37]–[39], [44], [47],

[50]–[53], [56]–[58], [60], [64], [67]–[69], [71], [73], [74], [80]

32 44%

Ant [11]–[13], [15], [16], [18], [19], [22], [23], [25], [26], [28], [36]–[39], [44],

[45], [47], [48], [51], [53], [60], [63], [67], [68], [71], [73], [74], [80]

30 41%

PC [9], [10], [12]–[14], [16]–[18], [21], [24], [26], [27], [29], [31], [33]–[36],

[38]–[41], [43], [49], [50], [54], [56], [66], [73], [78]

30 41%

48 Khaled S. Shebl et al.

Lucene (LC) [12], [15], [20], [25], [26], [32], [37], [39], [43]–[45], [47], [50]–[53], [56]–

[58], [60], [64], [67]–[69], [71], [73], [74], [76], [80]

29 40%

Jedit [11], [15], [16], [19], [22], [23], [25], [26], [28], [37]–[39], [44], [47], [48],

[51], [53], [57], [58], [60], [64], [67], [68], [71], [73], [74], [80]

27 38%

KC [9], [10], [13], [14], [16]–[18], [21], [24], [26], [27], [29], [31], [33]–[35],

[38], [39], [41], [43], [49], [54], [61], [65], [66], [70], [78]

27 37%

Xerces [11], [12], [15], [16], [18], [19], [22], [23], [25], [26], [28], [37], [39], [44],

[50]–[53], [57], [58], [60], [64], [67], [71], [74], [80]

26 36%

CM [9], [10], [12], [14], [16], [18], [21], [24], [26], [27], [31], [33]–[36], [38],

[39], [41], [43], [49], [50], [54], [56], [66], [73], [78]

26 36%

Poi [12], [15], [19], [25], [26], [37], [39], [44], [45], [47], [51]–[53], [56]–[58],

[60], [64], [67]–[69], [71], [73], [74], [76], [80]

26 36%

Synapse [11], [15], [19], [20], [22], [23], [25], [26], [28], [37], [44], [47], [51]–[53],

[57], [58], [60], [63], [67], [71], [73], [74], [76], [80]

25 34%

Ivy [11], [15], [19], [20], [22], [23], [25], [26], [37], [39], [44], [45], [47], [51]–

[53], [56], [60], [67], [68], [71], [73], [80]

23 32%

Log4j [11], [15], [16], [18]–[20], [22], [25], [26], [39], [44], [51]–[53], [58], [60],

[63], [64], [67], [68], [71], [73], [74]

23 32%

MW [9], [10], [12], [14], [16], [20], [26], [27], [33], [35], [38], [39], [49], [50],

[54], [56], [66], [73], [78]

19 26%

Velocity [12], [15], [18]–[20], [23], [25], [26], [29], [38], [44], [47], [56], [71], [73],

[74], [80]

17 23%

JM [10], [16]–[18], [21], [24], [27], [31], [33], [39], [43], [49], [54], [65], [70],

[77]

16 22%

Tomact [11], [12], [15], [16], [22], [28], [36], [38], [39], [47], [48], [50], [68] 13 18%

Eclipse JDT

core (JDT)

[12], [13], [36]–[38], [43], [50], [51], [69], [73] 10 14%

MC [13], [16], [26], [27], [33], [39], [49], [54], [66], [78] 10 14%

PDE [12], [18], [36]–[38], [43], [50], [69], [73] 9 12%

OpenIntents

Safe

[12], [30], [37], [38], [43], [50], [63], [69], [73] 9 12%

ZXing [12], [30], [37], [38], [43], [50], [63], [69], [73] 9 12%

Apache [12], [30], [37], [38], [43], [50], [63], [69], [73] 9 12%

Equinox

Framework

(EQ)

[12], [18], [37], [38], [43], [50], [69], [73] 8 11%

AR [10], [12], [26], [31], [32], [48], [49], [73] 8 11%

Mylyn (ML) [12], [18], [37], [38], [43], [50], [69], [73] 8 11%

PostgreSQL

(POS)

[13], [42], [44], [51], [59], [69] 6 8%

Redaktor [11], [12], [15], [20], [22], [38] 6 8%

Prop [16], [37], [45], [68]–[70] 6 8%

Columba

(COL)

[13], [42], [44], [59], [69] 5 7%

Mozilla

(MOZ)

[13], [42], [44], [59], [69] 5 7%

Arc [12], [15], [20], [22], [28] 5 7%

Bugzilla

(BUG)

[42], [44], [59], [69] 4 5%

Eclipse

Platform

(PLA)

[42], [44], [59], [69] 4 5%

Eclipse JDT [42], [44], [59] 3 4%

Xerces-init [15], [25], [73] 3 4%

forrest [26], [63] 2 3%

SOFTWARE DEFECT PREDICTION APPROACHES REVISITED 49

berek [32], [63] 2 3%

sklebagd [26], [63] 2 3%

pbeans2 [11], [22] 2 3%

systemdata [11], [22] 2 3%

Skarbonka [12] 1 1%

Open-source

projects

contributed by

Samsung

[53] 1 1%

DrJava [47] 1 1%

Genoviz [47] 1 1%

Jmri [47] 1 1%

Jmol [47] 1 1%

Jppf [47] 1 1%

Eclipse34_deb

ug

[30] 1 1%

Eclipse [38] 1 1%

MIS [61] 1 1%

119,989

C/C++

programs

within

Code4Bench

[62] 1 1%

Average [13] 1 1%

e-learning [63] 1 1%

termo [63] 1 1%

syzbkafucha [63] 1 1%

SWT [38] 1 1%

Simplified

PROMISE

Source Code

(SPSC)

[55] 1 1%

Apache

Luence

[73] 1 1%

Juliet Test

Suite for Java

in SARD

[75] 1 1%

Linux kernel [51] 1 1%

Xorg [51] 1 1%

Jackrabbit [51] 1 1%

BroadleafCom

merce

[58] 1 1%

elasticsearch [58] 1 1%

hazelcast [58] 1 1%

netty [58] 1 1%

orientdb [58] 1 1%

ZooKeeper [79] 1 1%

Xerces2 Java [79] 1 1%

JFreeChart [79] 1 1%

Jackson Data

Format

[79] 1 1%

Jackson Core [79] 1 1%

Commons

Imaging

[79] 1 1%

50 Khaled S. Shebl et al.

pdftranslator [26] 1 1%

wspornaganiep

i

[26] 1 1%

5.3.3. Use of Programming Languages

Knowing the programming languages used in datasets is important in the field of predicting software

defects. Every person wants to use a dataset that includes specific programming languages, whether he is

interested in it or has experience with it. Figure. 5 shows the 3 programming languages that were used

the most in the datasets. First, Java, which is used in 35 research papers. Second, C, which is used in 17

research papers. Third, C++, which is used in 9 research papers. These three languages along with the

rest of the statistics are in Figure. 5.

By analyzing Figure 5, we notice an important finding. Very popular programming languages exist, but

they are not used in datasets or are rarely used, such as Python, C#, R and JavaScript. Therefore, we

highlight the need for researchers to build datasets that use these important programming languages that

are widespread in the software development market.

Figure. 5: Distribution of programming languages

5.4. Tools

This section discusses the tools used to build, test, and compare models, preprocess data, or display the

results of performance measures. After summarizing all the tools used in the included papers, we found

that the four most used tools are as follows Python scripts/libraries, Weka, MATLAB, and Scikit Learn

Tool. 15% of the papers use Python scripts/libraries, 15% of papers use Weka, 11% of papers use

MATLAB, and 7% of papers use the Scikit Learn tool. Figure 6 shows the number of research papers that

use each tool.

SOFTWARE DEFECT PREDICTION APPROACHES REVISITED 51

Figure. 6: Distribution of used tools

5.5. Code Syntax, Semantics, Structural and Domain Information

Prediction of software defects remains a difficult problem. There have been numerous attempts to create

efficient techniques for forecasting future software flaws. Prior research on defect prediction was based

on code metrics. Unfortunately, code metrics are incapable of representing the implicit features of

defective modules' syntactic, semantic, structural, and domain information. When compared to earlier

methods based on explicit features (code metrics), the application of these implicit features yields superior

outcomes.

This section describes the number of papers that use code syntax, semantics, structural and domain

information. There are 19 papers that use source code semantics information, 18 papers that use source

code structural information, 17 papers that use source code structural syntax information and only 3

papers that use domain information. Results are shown in Figure. 7.

52 Khaled S. Shebl et al.

Although the domain information greatly affects the accuracy, it has been used very little. The reason

behind that is the training dataset contains data in only one field (such as the commercial, medical, or

space field) which increases accuracy. On the other hand, the use of a dataset that includes more than one

field negatively affects the accuracy of the model.

Figure. 7: Summary of code syntax, semantics, structural and domain information

6. Conclusion

This literature review aim is to determine the state of the software defect prediction research by

thoroughly examining the developments in published works over the past five years. We provide valuable

insights for both practitioners and researchers on the learning field, algorithms, performance measures,

method types, data sources, datasets, programming languages used in datasets, tools, code syntax

information, code semantics information, code structural information and domain information. We

believe this literature review provides the research community with clarity, understanding and motivation

for further advancement.

Major findings include that machine learning is extensively used compared to deep learning despite its

superior results. Notably, data mining was used very little compared to other fields of learning. We

discovered that the most widely employed performance metrics are AUC, F-measure, Recall, Accuracy

and Precision. It turns out that the just-in-time defect prediction is the least used type compared to the

others. We concluded that the most widely used data sources are PROMISE, NASA, ReLink and AEEEM

and summarized all datasets that were used in the included papers. It was clear that Java, C, and C++ were

the most often discovered programming languages in the datasets. On the other hand, we noticed that

there are very popular programming languages such as Python, C#, R and JavaScript that were rarely

used despite their importance and spread. We concluded that the most used tools are Python

scripts/libraries, Weka, MATLAB and Scikit Learn tool. We found that domain information was not much

used despite its importance.

Suggested future directions are as follows. Researchers are advised to direct their efforts to the fields of

deep learning and data mining. Secondly, employ the well-known performance metrics mentioned

SOFTWARE DEFECT PREDICTION APPROACHES REVISITED 53

previously for credible assessment. Thirdly, pay more attention to the just-in-time defect prediction due

to the scarcity of papers that use it. Fourthly, create datasets that include neglected -although popular-

programming languages such as Python, C#, R and JavaScript. Finally, use domain information because

it didn’t receive its eligible attention.

References

[1] R. Ferenc, P. Gyimesi, G. Gyimesi, Z. Tóth, and T. Gyimóthy, “An automatically created novel

bug dataset and its validation in bug prediction,” Journal of Systems and Software, vol. 169, p.

110691, 2020.

[2] S. Engineering Standards Committee of the IEEE Computer Society, “IEEE Std 1044-2009

(Revision of IEEE Std 1044-1993), IEEE Standard Classification for Software Anomalies,” 2010.

[3] I. Batool and T. A. Khan, “Software fault prediction using data mining, machine learning and deep

learning techniques: A systematic literature review,” Computers and Electrical Engineering, vol.

100, May 2022, doi: 10.1016/j.compeleceng.2022.107886.

[4] J. Goyal and R. Ranjan Sinha, “Software Defect-Based Prediction Using Logistic Regression:

Review and Challenges,” 2022, pp. 233–248. doi: 10.1007/978-981-16-4641-6_20.

[5] M. Jorayeva, A. Akbulut, C. Catal, and A. Mishra, “Machine Learning-Based Software Defect

Prediction for Mobile Applications: A Systematic Literature Review,” Sensors, vol. 22, no. 7.

MDPI, Apr. 01, 2022. doi: 10.3390/s22072551.

[6] Z. M. Zain, S. Sakri, and N. H. A. Ismail, “Application of Deep Learning in Software Defect

Prediction: Systematic Literature Review and Meta-analysis,” Information and Software

Technology, vol. 158. Elsevier B.V., Jun. 01, 2023. doi: 10.1016/j.infsof.2023.107175.

[7] Y. Zhao, K. Damevski, and H. Chen, “A Systematic Survey of Just-In-Time Software Defect

Prediction,” 2022. [Online]. Available: https://doi.org/xx.xxxx/xxyyzza.aabbcde

[8] S. A. El-Shorbagy, W. M. El-Gammal, and W. M. Abdelmoez, “Using SMOTE and heterogeneous

stacking in ensemble learning for software defect prediction,” in ACM International Conference

Proceeding Series, Association for Computing Machinery, May 2018, pp. 44–47. doi:

10.1145/3220267.3220286.

[9] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Tackling class overlap and imbalance problems in

software defect prediction,” Software Quality Journal, vol. 26, no. 1, pp. 97–125, Mar. 2018, doi:

10.1007/s11219-016-9342-6.

[10] S. Huda et al., “An Ensemble Oversampling Model for Class Imbalance Problem in Software

Defect Prediction,” IEEE Access, vol. 6, pp. 24184–24195, Mar. 2018, doi:

10.1109/ACCESS.2018.2817572.

[11] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, and S. Mensah, “MAHAKIL: Diversity

Based Oversampling Approach to Alleviate the Class Imbalance Issue in Software Defect

Prediction,” IEEE Transactions on Software Engineering, vol. 44, no. 6, pp. 534–550, Jun. 2018,

doi: 10.1109/TSE.2017.2731766.

[12] L. Gong, S. Jiang, R. Wang, and L. Jiang, “Empirical Evaluation of the Impact of Class Overlap

on Software Defect Prediction,” 2019.

[13] P. Lingden, A. Alsadoon, P. W. C. Prasad, O. H. Alsadoon, R. S. Ali, and V. T. Q. Nguyen, “A

novel modified undersampling (MUS) technique for software defect prediction,” Comput Intell,

vol. 35, no. 4, pp. 1003–1021, Nov. 2019, doi: 10.1111/coin.12229.

[14] X. Cai et al., “An under-sampled software defect prediction method based on hybrid multi-

objective cuckoo search,” Concurr Comput, vol. 32, no. 5, Mar. 2020, doi: 10.1002/cpe.5478.

54 Khaled S. Shebl et al.

[15] K. K. Bejjanki, J. Gyani, and N. Gugulothu, “Class imbalance reduction (CIR): A novel approach

to software defect prediction in the presence of class imbalance,” Symmetry (Basel), vol. 12, no. 3,

Mar. 2020, doi: 10.3390/sym12030407.

[16] H. Tong, S. Wang, and G. Li, “Credibility based imbalance boosting method for software defect

proneness prediction,” Applied Sciences (Switzerland), vol. 10, no. 22, pp. 1–29, Nov. 2020, doi:

10.3390/app10228059.

[17] R. B. Bahaweres, F. Agustian, I. Hermadi, A. I. Suroso, and Y. Arkeman, “Software defect

prediction using neural network based smote,” in International Conference on Electrical

Engineering, Computer Science and Informatics (EECSI), Institute of Advanced Engineering and

Science, Oct. 2020, pp. 71–76. doi: 10.23919/EECSI50503.2020.9251874.

[18] X. Du, H. Yue, and H. Dong, “Software Defect Prediction Method based on Hybrid Sampling,” in

ACM International Conference Proceeding Series, Association for Computing Machinery, May

2021. doi: 10.1145/3474198.3478215.

[19] S. Feng et al., “COSTE: Complexity-based OverSampling TEchnique to alleviate the class

imbalance problem in software defect prediction,” Inf Softw Technol, vol. 129, Jan. 2021, doi:

10.1016/j.infsof.2020.106432.

[20] S. Guo, J. Dong, H. Li, and J. Wang, “Software defect prediction with imbalanced distribution by

radius-synthetic minority over-sampling technique,” Journal of Software: Evolution and Process,

vol. 33, no. 7, Jul. 2021, doi: 10.1002/smr.2362.

[21] S. Goyal, “Effective software defect prediction using support vector machines (SVMs),”

International Journal of System Assurance Engineering and Management, vol. 13, no. 2, pp. 681–

696, Apr. 2022, doi: 10.1007/s13198-021-01326-1.

[22] C. Arun and C. Lakshmi, “Genetic algorithm-based oversampling approach to prune the class

imbalance issue in software defect prediction,” Soft comput, 2021, doi: 10.1007/s00500-021-

06112-6.

[23] W. Wei, F. Jiang, X. Yu, and J. Du, “An Under-sampling Algorithm Based on Weighted

Complexity and Its Application in Software Defect Prediction,” in ACM International Conference

Proceeding Series, Association for Computing Machinery, Jan. 2022, pp. 38–44. doi:

10.1145/3520084.3520091.

[24] S. Goyal, “Handling Class-Imbalance with KNN (Neighbourhood) Under-Sampling for Software

Defect Prediction,” Artif Intell Rev, vol. 55, no. 3, pp. 2023–2064, Mar. 2022, doi: 10.1007/s10462-

021-10044-w.

[25] S. Feng, J. Keung, P. Zhang, Y. Xiao, and M. Zhang, “The impact of the distance metric and

measure on SMOTE-based techniques in software defect prediction,” Inf Softw Technol, vol. 142,

Feb. 2022, doi: 10.1016/j.infsof.2021.106742.

[26] Q. Zhang and J. Ren, “Software-defect prediction within and across projects based on improved

self-organizing data mining,” Journal of Supercomputing, vol. 78, no. 5, pp. 6147–6173, Apr.

2022, doi: 10.1007/s11227-021-04113-8.

[27] H. Yang and M. Li, “Software Defect Prediction Based on SMOTE-Tomek and XGBoost,” in

Communications in Computer and Information Science, Springer Science and Business Media

Deutschland GmbH, 2022, pp. 12–31. doi: 10.1007/978-981-19-1253-5_2.

[28] S. Tang, S. Huang, C. Zheng, E. Liu, C. Zong, and Y. Ding, “A Novel Cross-Project Software

Defect Prediction Algorithm Based on Transfer Learning,” 2022.

[29] Y. Du, L. Zhang, J. Shi, J. Tang, and Y. Yin, “Feature-grouping-based two steps feature selection

algorithm in software defect prediction,” in ACM International Conference Proceeding Series,

Association for Computing Machinery, Jun. 2018, pp. 173–178. doi: 10.1145/3239576.3239607.

SOFTWARE DEFECT PREDICTION APPROACHES REVISITED 55

[30] S. Ghosh, A. Rana, and V. Kansal, “A Nonlinear Manifold Detection based Model for Software

Defect Prediction,” in Procedia Computer Science, Elsevier B.V., 2018, pp. 581–594. doi:

10.1016/j.procs.2018.05.012.

[31] S. Huda et al., “A Framework for Software Defect Prediction and Metric Selection,” IEEE Access,

vol. 6, pp. 2844–2858, Dec. 2017, doi: 10.1109/ACCESS.2017.2785445.

[32] S. Ghosh, A. Rana, and V. Kansal, “A Novel Model Based on Nonlinear Manifold Detection for

Software Defect Prediction,” in 2018 Second International Conference on Intelligent Computing

and Control Systems (ICICCS), IEEE, 2018, pp. 140–145.

[33] H. Wei, C. Hu, S. Chen, Y. Xue, and Q. Zhang, “Establishing a software defect prediction model

via effective dimension reduction,” Inf Sci (N Y), vol. 477, pp. 399–409, Mar. 2019, doi:

10.1016/j.ins.2018.10.056.

[34] M. Anbu and G. S. Anandha Mala, “Feature selection using firefly algorithm in software defect

prediction,” Cluster Comput, vol. 22, pp. 10925–10934, Sep. 2019, doi: 10.1007/s10586-017-

1235-3.

[35] N. Dhamayanthi and B. Lavanya, “Software defect prediction using principal component analysis

and naïve bayes algorithm,” in Lecture Notes on Data Engineering and Communications

Technologies, Springer Science and Business Media Deutschland GmbH, 2019, pp. 241–248. doi:

10.1007/978-981-13-6459-4_24.

[36] K. Bashir, T. Ali, M. Yahaya, and A. Saad Hussein, “A Hybrid Data Preprocessing Technique

based on Maximum Likelihood Logistic Regression with Filtering for Enhancing Software Defect

Prediction,” 2019.

[37] K. Zhu, S. Ying, N. Zhang, and D. Zhu, “Software defect prediction based on enhanced

metaheuristic feature selection optimization and a hybrid deep neural network,” Journal of Systems

and Software, vol. 180, Oct. 2021, doi: 10.1016/j.jss.2021.111026.

[38] A. O. Balogun et al., “An adaptive rank aggregation-based ensemble multi-filter feature selection

method in software defect prediction,” Entropy, vol. 23, no. 10, Oct. 2021, doi:

10.3390/e23101274.

[39] R. A. Khurma, H. Alsawalqah, I. Aljarah, M. A. Elaziz, and R. Damaševičius, “An enhanced

evolutionary software defect prediction method using island moth flame optimization,”

Mathematics, vol. 9, no. 15, Aug. 2021, doi: 10.3390/math9151722.

[40] K. Wang, L. Liu, C. Yuan, and Z. Wang, “Software defect prediction model based on LASSO–

SVM,” Neural Comput Appl, 2020, doi: 10.1007/s00521-020-04960-1.

[41] R. B. Bahaweres, E. D. H. Jana, I. Hermadi, A. I. Suroso, and Y. Arkeman, “Handling High-

Dimensionality on Software Defect Prediction with FLDA,” in Proceedings of 2nd 2021

International Conference on Smart Cities, Automation and Intelligent Computing Systems, ICON-

SONICS 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 76–81. doi:

10.1109/ICON-SONICS53103.2021.9616999.

[42] W. Zheng, T. Shen, X. Chen, and P. Deng, “Interpretability application of the Just-in-Time

software defect prediction model,” Journal of Systems and Software, vol. 188, Jun. 2022, doi:

10.1016/j.jss.2022.111245.

[43] J. Chen, X. Wang, S. Cai, J. Xu, J. Chen, and H. Chen, “A software defect prediction method with

metric compensation based on feature selection and transfer learning,” Frontiers of Information

Technology and Electronic Engineering, vol. 23, no. 5, pp. 715–731, May 2022, doi:

10.1631/FITEE.2100468.

[44] L. Chen, C. Wang, and S. Song, “Software defect prediction based on nested-stacking and

heterogeneous feature selection,” Complex & Intelligent Systems, Aug. 2022, doi: 10.1007/s40747-

022-00676-y.

56 Khaled S. Shebl et al.

[45] R. Malhotra, D. Aggarwal, and P. Garg, “Application of Random Vector Functional Link Network

for Software Defect Prediction,” 2022, pp. 127–143. doi: 10.1007/978-981-16-3097-2_11.

[46] N. Manoj and G. Deepak, “SDPO: An Approach Towards Software Defect Prediction Using

Ontology Driven Intelligence,” in Lecture Notes in Electrical Engineering, Springer Science and

Business Media Deutschland GmbH, 2022, pp. 164–172. doi: 10.1007/978-981-19-1677-9_15.

[47] Y. Qu et al., “Node2defect: Using network embedding to improve software defect prediction,” in

ASE 2018 - Proceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering, Association for Computing Machinery, Inc, Sep. 2018, pp. 844–849. doi:

10.1145/3238147.3240469.

[48] D. L. Miholca, G. Czibula, and I. G. Czibula, “A novel approach for software defect prediction

through hybridizing gradual relational association rules with artificial neural networks,” Inf Sci (N

Y), vol. 441, pp. 152–170, May 2018, doi: 10.1016/j.ins.2018.02.027.

[49] Y. Shao, B. Liu, S. Wang, and G. Li, “A novel software defect prediction based on atomic class-

association rule mining,” Expert Syst Appl, vol. 114, pp. 237–254, Dec. 2018, doi:

10.1016/j.eswa.2018.07.042.

[50] F. Wu et al., “Cross-Project and Within-Project Semisupervised Software Defect Prediction: A

Unified Approach,” IEEE Trans Reliab, vol. 67, no. 2, pp. 581–597, Jun. 2018, doi:

10.1109/TR.2018.2804922.

[51] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep Semantic Feature Learning for Software Defect

Prediction,” IEEE Transactions on Software Engineering, vol. 46, no. 12, pp. 1267–1293, Dec.

2020, doi: 10.1109/TSE.2018.2877612.

[52] X. Huo, Y. Yang, M. Li, and D. C. Zhan, “Learning Semantic Features for Software Defect

Prediction by Code Comments Embedding,” in Proceedings - IEEE International Conference on

Data Mining, ICDM, Institute of Electrical and Electronics Engineers Inc., Dec. 2018, pp. 1049–

1054. doi: 10.1109/ICDM.2018.00133.

[53] H. K. Dam et al., “Lessons learned from using a deep tree-based model for software defect

prediction in practice,” in IEEE International Working Conference on Mining Software

Repositories, IEEE Computer Society, May 2019, pp. 46–57. doi: 10.1109/MSR.2019.00017.

[54] H. Wei, C. Shan, C. Hu, Y. Zhang, and X. Yu, “Software defect prediction via deep belief

network,” Chinese Journal of Electronics, vol. 28, no. 5, pp. 925–932, Sep. 2019, doi:

10.1049/cje.2019.06.012.

[55] C. Pan, M. Lu, B. Xu, and H. Gao, “An improved CNN model for within-project software defect

prediction,” Applied Sciences (Switzerland), vol. 9, no. 10, May 2019, doi: 10.3390/app9102138.

[56] H. Ji, S. Huang, Y. Wu, Z. Hui, and C. Zheng, “A new weighted naive Bayes method based on

information diffusion for software defect prediction,” Software Quality Journal, vol. 27, no. 3, pp.

923–968, Sep. 2019, doi: 10.1007/s11219-018-9436-4.

[57] G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, “Deep Semantic Feature Learning with Embedded

Static Metrics for Software Defect Prediction,” in Proceedings - Asia-Pacific Software

Engineering Conference, APSEC, IEEE Computer Society, Dec. 2019, pp. 244–251. doi:

10.1109/APSEC48747.2019.00041.

[58] H. Liang, Y. Yu, L. Jiang, and Z. Xie, “Seml: A Semantic LSTM Model for Software Defect

Prediction,” IEEE Access, vol. 7, pp. 83812–83824, 2019, doi: 10.1109/ACCESS.2019.2925313.

[59] X. Yang, H. Yu, G. Fan, and K. Yang, “A differential evolution-based approach for effort-Aware

just-in-Time software defect prediction,” in RL+SE and PL 2020 - Proceedings of the 1st ACM

SIGSOFT International Workshop on Representation Learning for Software Engineering and

Program Languages, Co-located with ESEC/FSE 2020, Association for Computing Machinery,

Inc, Nov. 2020, pp. 13–16. doi: 10.1145/3416506.3423577.

SOFTWARE DEFECT PREDICTION APPROACHES REVISITED 57

[60] J. Chen et al., “Software visualization and deep transfer learning for effective software defect

prediction,” in Proceedings - International Conference on Software Engineering, IEEE Computer

Society, Jun. 2020, pp. 578–589. doi: 10.1145/3377811.3380389.

[61] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software defect prediction,”

Neurocomputing, vol. 385, pp. 100–110, Apr. 2020, doi: 10.1016/j.neucom.2019.11.067.

[62] A. Majd, M. Vahidi-Asl, A. Khalilian, P. Poorsarvi-Tehrani, and H. Haghighi, “SLDeep:

Statement-level software defect prediction using deep-learning model on static code features,”

Expert Syst Appl, vol. 147, Jun. 2020, doi: 10.1016/j.eswa.2019.113156.

[63] J. Ren and Q. Zhang, “A novel software defect prediction approach using modified objective

cluster analysis,” Concurr Comput, vol. 33, no. 9, May 2021, doi: 10.1002/cpe.6112.

[64] J. Deng, L. Lu, and S. Qiu, “Software defect prediction via LSTM,” IET Software, vol. 14, no. 4,

pp. 443–450, Aug. 2020, doi: 10.1049/iet-sen.2019.0149.

[65] M. A. Elsabagh, M. S. Farhan, and M. G. Gafar, “Cross-projects software defect prediction using

spotted hyena optimizer algorithm,” SN Appl Sci, vol. 2, no. 4, Apr. 2022, doi: 10.1007/s42452-

020-2320-4.

[66] K. Wongpheng and P. Visutsak, “Software Defect Prediction using Convolutional Neural

Network,” 2020.

[67] J. Tian and Y. Tian, “A model based on program slice and deep learning for software defect

prediction,” in 2020 29th International Conference on Computer Communications and Networks

(ICCCN), IEEE, 2020, pp. 1–6.

[68] Z. Yuan, X. Chen, Z. Cui, and Y. Mu, “ALTRA: Cross-Project Software Defect Prediction via

Active Learning and Tradaboost,” IEEE Access, vol. 8, pp. 30037–30049, 2020, doi:

10.1109/ACCESS.2020.2972644.

[69] C. Jin, “Cross-project software defect prediction based on domain adaptation learning and

optimization,” Expert Syst Appl, vol. 171, Jun. 2021, doi: 10.1016/j.eswa.2021.114637.

[70] A. K. Gangwar, S. Kumar, and A. Mishra, “A paired learner-based approach for concept drift

detection and adaptation in software defect prediction,” Applied Sciences (Switzerland), vol. 11,

no. 14, Jul. 2021, doi: 10.3390/app11146663.

[71] H. Yu, X. Sun, Z. Zhou, and G. Fan, “A novel software defect prediction method based on

hierarchical neural network,” in Proceedings - 2021 IEEE 45th Annual Computers, Software, and

Applications Conference, COMPSAC 2021, Institute of Electrical and Electronics Engineers Inc.,

Jul. 2021, pp. 366–375. doi: 10.1109/COMPSAC51774.2021.00059.

[72] R. B. Bahaweres, D. Jumral, I. Hermadi, A. I. Suroso, and Y. Arkeman, “Hybrid Software Defect

Prediction Based on LSTM (Long Short Term Memory) and Word Embedding,” in Proceedings

of 2nd 2021 International Conference on Smart Cities, Automation and Intelligent Computing

Systems, ICON-SONICS 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 70–

75. doi: 10.1109/ICON-SONICS53103.2021.9617182.

[73] S. Feng, J. Keung, J. Liu, Y. Xiao, X. Yu, and M. Zhang, “ROCT: Radius-based class overlap

cleaning technique to alleviate the class overlap problem in software defect prediction,” in

Proceedings - 2021 IEEE 45th Annual Computers, Software, and Applications Conference,

COMPSAC 2021, Institute of Electrical and Electronics Engineers Inc., Jul. 2021, pp. 228–237.

doi: 10.1109/COMPSAC51774.2021.00041.

[74] W. Liu, Y. Zhu, X. Chen, Q. Gu, X. Wang, and S. Gu, “S2LMMD: Cross-Project Software Defect

Prediction via Statement Semantic Learning and Maximum Mean Discrepancy,” in Proceedings -

Asia-Pacific Software Engineering Conference, APSEC, IEEE Computer Society, 2021, pp. 369–

379. doi: 10.1109/APSEC53868.2021.00044.

58 Khaled S. Shebl et al.

[75] J. Xu, J. Ai, and T. Shi, “Software Defect Prediction for Specific Defect Types based on

Augmented Code Graph Representation,” in Proceedings - 2021 8th International Conference on

Dependable Systems and Their Applications, DSA 2021, Institute of Electrical and Electronics

Engineers Inc., 2021, pp. 669–678. doi: 10.1109/DSA52907.2021.00097.

[76] W. Zheng, L. Tan, and C. Liu, “Software Defect Prediction Method Based on Transformer Model,”

in 2021 IEEE International Conference on Artificial Intelligence and Computer Applications,

ICAICA 2021, Institute of Electrical and Electronics Engineers Inc., Jun. 2021, pp. 670–674. doi:

10.1109/ICAICA52286.2021.9498179.

[77] S. K. Pemmada, H. S. Behera, J. Nayak, and B. Naik, “Correlation-based modified long short-term

memory network approach for software defect prediction,” Evolving Systems, 2022, doi:

10.1007/s12530-022-09423-7.

[78] C. Li, Y. Yuan, and J. Yang, “Causally Remove Negative Confound Effects of Size Metric for

Software Defect Prediction,” Applied Sciences (Switzerland), vol. 12, no. 3, Feb. 2022, doi:

10.3390/app12031387.

[79] P. Ardimento, L. Aversano, M. L. Bernardi, M. Cimitile, and M. Iammarino, “Just-in-time software

defect prediction using deep temporal convolutional networks,” Neural Comput Appl, vol. 34, no.

5, pp. 3981–4001, Mar. 2022, doi: 10.1007/s00521-021-06659-3.

[80] M. N. Uddin, B. Li, Z. Ali, P. Kefalas, I. Khan, and I. Zada, “Software defect prediction employing

BiLSTM and BERT-based semantic feature,” Soft comput, Aug. 2022, doi: 10.1007/s00500-022-

06830-5.

