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Abstract: Electromyography (EMG) is a technique used to assess and record the electrical activity 

produced by skeletal muscles. This information can be used to diagnose muscle disorders, such as 

myopathy and Amyotrophic Lateral Sclerosis (ALS). In this study, we made a significant contribution to 

the field by proposing an automated method for classifying EMG signals that is more accurate than 

previous methods. Our method uses tunable-Q factor wavelet transform (TQWT) to decompose the 

EMG signal into its constituent components. These components are then used to calculate seven 

features that characterize the signal which are Interquartile Range (IQR), Mean Absolute Value (MAV), 

Mode, Kurtosis, Standard Deviation, Ratio of the absolute mean value , and Skewness. The features are 

then used to train a Bagging ensemble classifier. We evaluated our method on a dataset of EMG signals 

from healthy people, patients with myopathy, and patients with ALS. Our method achieved an accuracy 

of 99% in classifying the EMG signals. Our results suggest that the proposed method is a promising 

approach for diagnosing muscle disorders using EMG. This method could be used to improve the early 

diagnosis and treatment of these disorders.      
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A depolarizing cell in human body organ can produce an electrical activity that form biomedical 

signals. The electrical activity generated in skeletal muscle fibers is recorded and analyzed by 

electromyography (EMG) technique. EMG signals have many applications in the biomedical field. 

Major areas of research include clinical and biomedical engineering in the area of diagnosis. An EMG is 

the sum of the action potentials from muscle fibers recorded using skin electrodes. The higher the EMG 

signal, the more action potentials are recorded and the more muscles that contract. The acquisition of 

the Motor Unit Action Potentials (MUAPs) in an EMG examination would provide critical information 

for the diagnosis of neuromuscular disorders. EMG can be used to evaluate the condition of muscles as 

well as the nervous system that controls them. The EMG signal is a complex signal that is dependent on 

the anatomical and physiological characteristics of muscles [1].  

As the EMG signal travels through different tissues, it generates noise. Furthermore, if the EMG 

detector is placed on a particularly deep surface, it can pick up signals from different engine units, 

causing the signals to interact. In biomedical engineering, EMG signals have become a remarkable 

necessity. Until now, many studies and efforts have been made in this field to improve algorithms and 

develop old methodologies. Techniques for reducing noise and obtaining accurate EMG signals are also 

under development. Clinical settings, as well as prosthetic and rehabilitation applications, make 

extensive use of EMG signals [2].  

EMG signals can be discovered, decomposed, processed, and classified using advanced techniques. 

Many software programs can collect signals from individual patients and effectively and efficiently 

describe the signal and its nature [3].  

Finding and diagnosing neuromuscular disorders was previously difficult for their clinical counselling 

analysis. The skeleton muscles are composed of thousands of muscle fibers that are connected to the 

axon or motor neuron that generates electrical activity in the muscles. 

Recent advances in signal processing and mathematical models have been used to improve EMG signal 

evaluation and detection. This entails the application of artificial intelligence and a variety of 

mathematical techniques. The parametric extraction from EMG signals is a critical step in determining 

the feature vector. Feature selection guides the selection of the best feature for classification, which is 

dependent on a number of processes. As a result, feature extraction is critical in diagnostic systems for 

classification. Nerve cell damage in the brain and spinal cord can cause a neurological disease 

(Amyotrophic Lateral Sclerosis (ALS)) which can be characterized by motor neuron disorders.  

The EMG signal of this disease can be diagnosed depending on the motor unit. This motor unit is a set 

of motor neurons and muscle fibers. Muscle activities can be controlled by the signal transferred from 

the upper motor neurons in the brain to the lower motor neurons in the spinal cord [4].  

Many researchers were concerned about the role of EMG in assessing muscle activity in ALS and 

myopathy (MYO), because ALS is commonly associated with muscle atrophy and significantly affects 

the neuron, causing serious damage to both the nervous and respiratory systems, whilst MYO begins to 

affect the skeletal fiber muscle, leading to inflammation [5-7]. Finally, the information from the 

classification stage is presented as control commands [8]. Classifier performance is affected by EMG 

variations caused by different muscle contractions, which can be controlled using machine learning 

techniques and feature extraction. 

Oscilloscopes were traditionally used by neurophysiologists and medical professionals to access Motor 

Unit Action Potentials (MUAP) information from their shapes and patterns. However, MUAPs from 

different motor neurons overlap, creating an interference pattern that makes detecting individual MUAP 

shapes difficult. As a result, a number of computer-based EMG signal analysis algorithms [9] have been 

developed. 
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The success of feature extraction methods and classifiers determines classification accuracy. This is 

presented by the researchers in order to improve the efficacy of the extracted features used in 

characterizing EMG signals for classification. 

We propose a bagging ensemble classifier based on the TQWT for diagnosing ALS, myopathy, and 

healthy EMG signals in this paper. 

TQWT is applied to the EMG signal in the proposed technique, and features are extracted and used for 

EMG signal classification, as shown in Figure 1. To evaluate the efficiency of the classifier framework 

used in the classification of EMG signals, it was compared to other classifiers that use EMG signals. 

The organization of the other sections is described as following: Section 2 discusses the dataset used in 

the implementation, while section 3 explains the methodology. Both results and conclusion are 

presented in sections 4 and 5 respectively.  
 

 
Figure. 1: An overview of the proposed method for classifying EMG signals 

 

2. Literature Review 

 

Tunable-Q wavelet transform (TQWT) was utilized by Subasi and Yaman (2021) to extract features 

from the raw EMG, and the Random Subspace ensemble classifier was used to categorize the EMG 

signals. Thus, with k-fold cross validation, the suggested Random Subspace ensemble classifier model 
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with TQWT feature extraction showed promising results. The effectiveness of the Random Subspace 

ensemble classifier model for the identification of neuromuscular illnesses was demonstrated by 

experimental data. The SVM and ANN with Random Subspace ensemble approach had a 99% accuracy 

rate, according to the results. [10] 

A method to automatically categorize EMG data as normal, neurogenic, or myopathic was put out by 

Subasi (2012). Additionally, he evaluated the classification accuracy of EMG data using classifiers 

based on multilayer perceptron neural networks (MLPNN), dynamic fuzzy neural networks (DFNN), 

and adaptive neuro-fuzzy inference systems (ANFIS). Different outcomes were found through 

investigation of the soft computing methodologies with regard to the effects of characteristics on the 

classification of EMG signals. According to the comparison research, the ANFIS modeling was superior 

to the DFNN and MLPNN in at least three ways: it had a slightly higher recognition rate, was less 

sensitive to overtraining, and consistently produced reliable results. [11] 

With the help of higher order statistics, Cherifi et al. (2023) used a variety of techniques to extract 

features from the raw EMG signal in the time and time-frequency domain using DWT, WPD, and a 

combination of the two, with or without preprocessing and for varying levels of decomposition from 

level 3 to 10. With Bayesian optimization of the hyperparameters, they used optimized ensemble trees 

and optimized SVM classifiers. The EMG lab dataset, which is open to the public, was used for the 

studies. They found that utilizing DWT at level 9 without any preprocessing and the linear SVM 

classifier produced good training results, with testing accuracy of 78.35%. The results obtained show 

how well the suggested technique performs in precisely classifying the EMG signals. The classifier 

ensemble trees failed to distinguish between those with ALS and healthy people, according to the 

authors. [12] 

In order to help in the identification of neuromuscular illnesses, Jose et al. (2020) presented the creation 

and validation of an accurate automatic diagnostic method to classify intramuscular EMG (iEMG) 

signals into categories of healthy, myopathy, or neuropathy. This study uses the lifting wavelet 

transform (LWT) to breakdown an iEMG signal into a group of "disjoint" down-sampled signals. The 

LWT coefficients in the subbands' Higuchi's fractal dimensions (FDs) were calculated. Each down-

sampled signal's one-dimensional local binary pattern and the FDs of the LWT subband coefficients 

were combined. The class labels of the down-sampled signals were then calculated using a multilayer 

perceptron neural network (MLPNN). In order to help in the identification of neuromuscular illnesses, 

Jose et al. (2020) presented the creation and validation of an accurate automatic diagnostic method to 

classify intramuscular EMG (iEMG) signals into categories of healthy, myopathy, or neuropathy. This 

study uses the lifting wavelet transform (LWT) to breakdown an iEMG signal into a group of "disjoint" 

down-sampled signals. The LWT coefficients in the sub-bands' Higuchi's fractal dimensions (FDs) were 

calculated. Each down-sampled signal's one-dimensional local binary pattern and the FDs of the LWT 

sub-band coefficients were combined. The class labels of the down-sampled signals were then 

calculated using a multilayer perceptron neural network (MLPNN). [13] 

Deep models have gained a lot of traction recently thanks to their outstanding performance across a 

wide range of classification issues. Deep networks require specialized hardware and have tremendous 

computational complexity. A hand-modeled feature selection strategy is suggested in (Baygin et al., 

2022) as a solution to this issue (without lowering classification ability).  A brand-new shape-based 

local feature extractor that makes use of the frustum's geometric form was introduced. A frustum pattern 

was used to create textural elements. Additionally, this model featured statistical features that had been 

retrieved. Low-level features were obtained after fusing textures and statistics features to create a hybrid 

feature extraction phase. TQWT was utilized to produce high level features. The hybrid feature 

generator that was described produced 154 feature vectors, hence the name Frustum154. This model 
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was able to automatically choose the right feature vectors throughout the multilevel feature synthesis 

phase, and it combined the suitable feature vectors to form the final feature vector. Shallow classifiers 

were then applied after iterative neighborhood component analysis (INCA) determined which feature 

vector was best. Three straightforward hand-movement sEMG datasets had been used to evaluate 

Frustum154. Biomedical engineering frequently used hand-movement sEMG datasets, although there 

were significant issues. For the described models to acquire excellent classification skill, typically one 

dataset was needed. Three sEMG datasets were used in this study to evaluate Frustum154's 

performance.  The proposed model was self-organized and automatically chooses the sub-bands and 

features that are most useful. Its shallow classifier classification accuracy results of 98.89%, 94.94%, 

and 95.30% show that Frustum154 can increase classification accuracy. [14] 

An innovative flexible approach for classifying EMG signals using the adjustable Q-factor wavelet 

transform (TQWT) was introduced by Achmamad et al. in 2020. The TQWT methodology produced a 

variety of sub-bands that were used to extract important energy-related information. Following this, the 

calculated features were chosen using the filter selection (FS) method. The efficiency of the feature 

selection stage led to improvements in classification performance as well as a decrease in the 

classification algorithm's computing time. For automated diagnosis, the chosen feature subsets were fed 

into different classifier algorithms, including k-nearest neighbor (k-NN), least squares support vector 

machine (LS-SVM), and random forest (RF).  In comparison to LS-SVM and RF, the experimental 

results indicate that the k-NN classifier provides better classification measures. A 10-fold cross-

validation method was used to assess the categorization task's robustness. [15] 

 

In the present work, we introduce a classification model implemented on a big dataset using TQWT in 

contribution with bagging ensemble classifier with random forest for achieving massive accuracy. 

 

3. Description of Dataset 

 

In this work, we employed EMG signals provided by EMGLAB database [16]. Table 1 shows the 

database selected for healthy people of six males and four females aged between (21- 37). 

 
Table 1 Database of the selected sample 

 

 ALS Myopathy Normal 

Age 35 - 67 years 19 - 63 years 21 - 37 years 

No. of individuals 8 

4 women 

7 

5 women 

10 

4 women 

4 men 2 men 6 men 

Condition 

Five participants died 

within a few years of being 

diagnosed with the disease. 

 
no history of neuromuscular 

disease 

Sampling rate and duration 23437.5 Hz, 11.2 seconds 

Sampling points 262500 
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Selected samples have not been prescribed before of neurological diseases. Table 1 also shows another 

EMG signals database of Myopathy patients aged 19 to 63 years of 5 males and 2 females, as well as 

ALS patients aged 35 to 67 years of 4 males and 4 females. Muscle’s EMG signal was acquired such 

that data was collected from five distant places using concentric needle electrode. Three different depths 

with constant and low voluntary contraction levels of the muscle were selected to set and place the 

electrode in the muscle. A 16-bit resolution digitizer was used to digitize the EMG data at a sampling 

frequency of 23437.5 Hz. 

1st order- Butterworth zero-phase distortion digital high-pass filter, 3 dB limit, and 50 Hz was used to 

filter the recorded EMG data to reduce low-frequency baseline movements. 

Furthermore, and before analysis, a high-pass and low-pass filter with of 2 and 10 kHz cutoff 

frequencies was used filter the signals.   

The brachial biceps muscles were the most frequently examined in all three groups. For this, they 

become the focus of the work.  The EMG raw patterns of Myopathy, ALS, and normal cases from 

EMGLAB dataset are presented in Figure 2. 

 

 

Figure. 2: EMG raw patterns of (a) ALS (b) Myopathy (c) Normal subjects [16] 

 

4. Methodology 

 

4.1. Tunable Q Factor Wavelet Transform (TQWT) 

 

In recent years, TQWT has become a very common technique for analyzing biomedical signals. This 

approach was developed by Selesnick [17]. TQWT allows the user to specify a Q-factor to produce a 

wavelet Multi Resolution Analysis (MRA). Among discrete-time wavelet transforms techniques, 

TQWT has proven its simplicity and efficiency in tuning the parameters required to reconstruct the 

signals ([18]). Applying radix-2 Fast Fourier Transforms (FFTs) can increase the efficiency of TQWT 

implementation. Like fractional spline wavelet transform, TQWT depends on non-rational transfer 

functions filters to divide the signal energy into high and low pass sub-bands. The parameters r 

(oversampling rate/redundancy), J (number of levels), and Q (Q-factor) measure TQWT’s efficiency in 
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signal decomposition. In the present work, the best performance was achieved using the parameters r = 

3, J = 7, and Q = 1. 

 

4.2. Features Extraction 

The EMG signals are decomposed into sub-bands by TQWT. Statistical features such as Mean Absolute 

Values (MAV), Interquartile Range (IQR), Kurtosis, Standard Deviation (SD), mode, skewness, and 

ratio of absolute mean values are then determined from the sub-bands to classify EMG signals for the 

different cases. 

 

The mean absolute value 𝜇  was calculated by Eq. (1), 

𝜇 =
1

𝐿
∑|𝑥𝑗|                                                                    (1)

𝐿

𝑗=0

 

Where L is the dataset length, 𝑥𝑗is the 𝑗𝑡ℎ sample amplitude 

The seconed feature, Interquartile Range 𝐼𝑄𝑅, was determined by Eq. (2), 

𝐼𝑄𝑅 =  𝑄𝑗2
−  𝑄𝑗1                                                                                       (2) 

Where 𝑄𝑗1
  and 𝑄𝑗2

 are the 25𝑡ℎ and 75𝑡ℎ percentile of thedata respectively. 

Kurtosis 𝐾 can be obtained by Eq. (3), 

𝐾 =  
1

𝐿
∑

(𝑥𝑗 −  𝜇)
4

𝜎4

𝐿

𝑗=0

                                                        (3) 

Where 𝜎 is the standard deviation which can be calculated by Eq. (4), 

𝜎 = √
∑ (𝑥𝑗 −  𝜇)

2𝐿
𝑗=0

𝐿
                                                         (4) 

The statistical feature of the “Mode” is represented by the number of observations of a value which is 

the most occurring in the total dataset. 

The Skewness 𝜑 is related to the the total length of the dataset L,  the𝑗𝑡ℎ sample amplitude 𝑥𝑗 ,  the 

mean value 𝜇, and the standard deviation 𝜎  by Eq. (5), 

𝜑 =  
1

𝐿
∑

(𝑥𝑗 −  𝜇)
3

𝜎3

𝐿

𝑗=0

                                                           (5) 

The last statistical feature, ratio of the absolute mean values 𝛼 can be determined by Eq. (6), 
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𝛼 =  
∑ |𝑥𝑗|𝐿

𝑗=0

∑ |𝑦𝑗|𝐿
𝑗=0

                                                                         (6) 

Where 𝒚𝒋 is the adjacent sample amplitude to 𝒙𝒋 . 

 

4.3. Method of Classification 

 

For classifying the EMG signal dataset, we recommended applying Bagging Ensemble Classifier with 

Random Forest. The bagging (bootstrap aggregation) algorithm combines basic ensemble modeling 

approaches by creating and aggregating base models. In the model creation process, bootstrap samples 

are first used from the training set to construct the base models. Then, classification or averaging for 

regression can be achieved by integrating them using unweighted voting. If the base method in this 

classifier is unstable, bagging is likely to outperform single models using the same base algorithm. 

However, this approach may not provide the best prediction performance. Stable algorithms do not 

require diversity, so classification performance may not be significantly improved or decreased . 

In ensemble models, the aggregation of base models can effectively resolve their overfitting problem. In 

addition, attribute selection is not needed, as more attributes increase the probability of generating more 

diverse models. Bagging can provide a final model that may be superior to or at least on par with a 

single model when there are enough base models. The performance of bagging ensembles generally 

increases with the number of base models, but stabilizes beyond a certain level. At this stage, bootstrap 

samples can only achieve a certain level of model diversity  [19 .]  

The Bagging Ensemble Classifier with Random Forest was evaluated by comparison with the following 

techniques: 

  

4.3.1. Artificial Neural Networks (ANNs) 

 

Artificial neural networks (ANNs) consist of groups of input and output neurons that are connected to 

each other by weighted connections. The weights of these connections determine the ability of the 

network to predict the correct class label for each input. One of the most popular ANN structures is the 

multilayer feed-forward network (FFN). In an FFN, the neurons are connected layer by layer, with no 

cross-layer or in-layer connections. When feature vectors are input to the network, each neuron in the 

input layer corresponds to a component of the feature vector. The activation function then activates the 

input neurons. The labels are provided by the output/last layer, since each neuron in this layer either 

represents a label or an element of a label vector. The activation function that governs the functional 

units represented by the neurons in both the hidden and output layers is often the sigmoid function [20]. 

In this work, an ANN with a rectified linear unit activation function was applied with 100 hidden layers, 

a constant learning rate of 0.001, and a maximum number of iterations of 200. 

 

4.3.2. Random Forests (RF) 

 

Random forest (RF) is a machine learning algorithm that consists of a group of independent decision 

trees. To generate an individual decision tree in the ensemble, RF randomly selects a subset of attributes 

at every node to identify the split. In the classification process, each tree in the classifier predicts a class. 

The dominant class (the final prediction) is returned by the model [20]. In this work, RF was applied 

with 80 estimators and the "gini" function was used to measure the quality of a split. 
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4.3.3. K-Nearest Neighbor (KNN) 

 

In k-nearest neighbors (KNN), the training set is used instead of a training process. KNN relies on the 

similarity of tuples in the input and output spaces as its main learning concept. [20]. 

If an unrecognized tuple exists, it can be recognized based on its closest tuples in the training set. The 

closeness of tuples is typically measured using the Euclidean distance. The unrecognized tuple can be 

classified into the majority class among its k-nearest neighbors, and the average value of the k-nearest 

neighbors can be used for regression [ .21  ]  

In this work, KNN was applied with a number of neighbors of 5 and a uniform weight function was 

used in prediction. This means that all points in each neighborhood are weighted equally. 

 

4.3.4. Support Vector Machine (SVM) 

 

Support vector machines (SVMs) are a classification approach that can be used to classify linear and 

nonlinear data. The initial training set can be transformed into a higher dimension using a nonlinear 

mapping. In this higher dimension, an optimum separation hyperplane is searched for using margins and 

support vectors. A decision boundary is a hyperplane that discriminates one class of tuples from the 

others. This hyperplane is used to split the data into two classes, in case of using an appropriate 

nonlinear mapping providing a high enough dimension. 

For this reason, SVMs can accurately predict complex nonlinear decision boundaries. Studies have 

found that SVMs are resistant to overfitting compared to other techniques [21]. In this work, one-vs-rest 

SVM with radial basis kernel function was used. 

 

4.3.5. Naïve Bayes (NB) 

 

Naive Bayes (NB) is a simple learning approach that assumes the features are conditionally 

independent. Both Maximal-A-Posterior (MAP) rules and Bayes' theorem are the main concepts of NB. 

It can categorize binary data as well as multi-class data. The most important benefits of this approach 

are incremental learning, low variance, computing efficiency, robustness in the face of missing 

information, and direct prediction of posterior probabilities [22]. 

 

4.3.6. Classification and Regression Tree (CART) 

 

Classification and Regression Tree (CART) was proposed by Breiman in 1984. CART is a decision tree 

algorithm that recursively partitions the data space into subsets, with a simple prediction model for data 

fitting in each subset. CART can separate outliers in a separate node and adjust in time. CART is 

reliable in handling complex structured data because it can rely on one parameter, making it a 

challenging classification technique [23]. In this work, the “gini” function was used to measure the 

quality of a split. 

 

5. Results and Discussion 

In this study, we used EMG signals to diagnose neuromuscular diseases. First, we divided the EMG 

signal into frames of length 8192, resulting in 1051 ALS instances, 960 myopathic instances, 1600 

control instances, and a total of 3611 instances for classification.  

True Positives (TP) and True Negatives (TN) indicate correct classifications. False Positives (FP) occur 

when the expected output is negative but the classifier predicts it to be positive. False Negatives (FN) 
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occur when the expected output is positive but the classifier predicts it to be negative. These metrics 

were used to evaluate the statistics. 

Each frame is decomposed into sub-bands using the TQWT method. This allows us to obtain useful 

statistical features for classifying signals in each sub-band. The extracted features include kurtosis, IQR, 

mode, MAV, skewness, standard deviation, and ratio. 

We determined the classifier recall, precision, F-measure, and accuracy to evaluate the classifier's 

performance and reliability. The classifier recall and precision can be evaluated using Eqs. (7) and (8), 

respectively. 

𝒓𝒆𝒄𝒂𝒍𝒍 =  
𝑻𝑷

(𝑻𝑷 + 𝑭𝑵)
                                                                       (𝟕) 

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝑷

(𝑻𝑷 + 𝑭𝑷)
                                                                 (𝟖) 

F-measure can be obtained by Eq. (9) 

𝑭 − 𝑴𝒆𝒂𝒔𝒖𝒓𝒆 =  
(𝟐 ∗ 𝑻𝑷)

(𝟐 ∗ 𝑻𝑷 + 𝑭𝑷 + 𝑭𝑵)
                                      (𝟗) 

The total accuracy can be determined by Eq. (10) 

𝑨𝑪𝑪 =  
(𝑻𝑷 + 𝑻𝑵)

(𝑻𝑷 + 𝑭𝑵 + 𝑻𝑵 + 𝑭𝑷)
∗ 𝟏𝟎𝟎                                            (𝟏𝟎) 

Selecting a specific training/test set can introduce bias, which can be reduced by using the technique of 

10-fold cross-validation. 

Classifier results can be expressed as a percentage of the total using kappa, which ranges from 0 to 1. 

Tables 2 and 3 show the performance of single and bagging classifiers for EMG signals, respectively. 

 
Table 2 Classification results of single classifiers 

 Accuracy % F1 Kappa Recall Precision 

RF 0.989 (+/- 0.011) 0.991 (+/- 0.011) 0.985 (+/- 0.015) 0.990 (+/- 0.012) 0.993 (+/- 0.011) 

KNN 0.922 (+/- 0.023) 0.926 (+/- 0.022) 0.887 (+/- 0.048) 0.922 (+/- 0.027) 0.929 (+/- 0.027) 

NB 0.624 (+/- 0.042) 0.552 (+/- 0.073) 0.378 (+/- 0.082) 0.580 (+/- 0.042) 0.669 (+/- 0.080) 

ANN 0.894 (+/- 0.056) 0.865 (+/- 0.077) 0.836 (+/- 0.090) 0.897 (+/- 0.068) 0.913 (+/- 0.057) 

DT 0.945 (+/- 0.022) 0.947 (+/- 0.034) 0.916 (+/- 0.048) 0.944 (+/- 0.024) 0.936 (+/- 0.030) 

SVM 0.759 (+/- 0.032) 0.756 (+/- 0.045) 0.620 (+/- 0.060) 0.738 (+/- 0.049) 0.796 (+/- 0.048) 

  

Table 3 Classification results of bagging ensemble classifiers 

 Accuracy % F1 Kappa Recall Precision 

RF 0.990 (+/- 0.015) 0.989 (+/- 0.008) 0.984 (+/- 0.014) 0.988 (+/- 0.016) 0.991 (+/- 0.007) 

KNN 0.925 (+/- 0.022) 0.926 (+/- 0.025) 0.886 (+/- 0.030) 0.921 (+/- 0.028) 0.930 (+/- 0.031) 

NB 0.624 (+/- 0.042) 0.552 (+/- 0.073) 0.378 (+/- 0.082) 0.580 (+/- 0.042) 0.669 (+/- 0.080) 

ANN 0.940 (+/- 0.024) 0.936 (+/- 0.024) 0.907 (+/- 0.033) 0.939 (+/- 0.030) 0.941 (+/- 0.030) 



D EMG SIGNAL CLASSIFICATION FOR NEUROMUSCULAR DISORDERS DIAGNOSIS USING TQWT AND 

BAGGING            29 

 

DT 0.975 (+/- 0.013) 0.977 (+/- 0.016) 0.958 (+/- 0.022) 0.971 (+/- 0.027) 0.977 (+/- 0.017) 

SVM 0.757 (+/- 0.030) 0.758 (+/- 0.036) 0.617 (+/- 0.067) 0.735 (+/- 0.029) 0.795 (+/- 0.063) 

 

Table 2 shows the performance of single classifiers. RF achieved the best performance with an accuracy 

of 98.9%. Table 3 shows the performance of bagging ensemble methods. Bagging ensemble methods 

improved the performance of most classifiers, with RF again achieving the best performance with a 

success rate of 99%. 

 

6. Conclusion 

 

This work proposes a technique for classifying myopathy, healthy, and amyotrophic lateral sclerosis 

(ALS) EMG signals using tunable Q-factor wavelet transform (TQWT) based features and bagging 

ensemble classifier technique. TQWT decomposes the EMG signals into high and low frequency sub-

bands. After seven levels of decomposition, statistical features are calculated from TQWT coefficients 

to reduce the dimension and eliminate unnecessary features. The classification performance of the 

extracted features is evaluated using single and bagging ensemble classifiers. Bagging ensemble 

classifier achieved better classification performance than single classifiers. The proposed technique can 

be easily implemented in any computer-based diagnosis system. 
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