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Abstract: With the rapid advancements of deep learning research, there have been many milestones 

achieved in the field of computer vision. However, most of these advances are only applicable in cases 

where hand-annotated datasets are available. This is considered the current bottleneck of deep learning 

that self-supervised learning aims to overcome. The self-supervised framework consists of proxy and 

target tasks. The proxy task is a self-supervised task pretrained on unlabeled data, the weights of which 

are transferred to the target task. The prevalent paradigm in self-supervised research is to pretrain 

using ImageNet which is a single-object centric dataset. In this work, we investigate whether this is the 

best choice when the target task is multi-object centric. We pretrain “SimSiam” which is a non-

contrastive self-supervised algorithm using two different pretraining datasets: ImageNet100 (single-

object centric) and COCO (multi-object centric). The transfer performance of each pretrained model is 

evaluated on the target task of multi-label classification using PascalVOC. Furtherly, we evaluate the 

two pretrained models using CityScapes; an autonomous driving dataset in order to study the 

implications of the chosen  pretraining datasets in different domains. Our results showed that the 

SimSiam model pretrained using COCO consistently outperformed the ImageNet100 pretrained model 

by ~+1 percent (57.4 vs 58.3 mAP for CityScapes). This is significant since COCO is smaller in size. 

We conclude that using multi-object centric datasets for pretraining self-supervised learning algorithms 

is more efficient in cases where the target task is multi-object centric and in complex scene 

understanding tasks such as autonomous driving applications.  

 

Keywords: self-supervised learning, transfer learning, scene understanding, SimSiam,  autonomous 

driving 
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1. Introduction  

 

Great advances were made in the field of computer vision in the last decade. These achievements were 

mostly possible due to two main factors: the rapid evolution of Convolutional Neural Network (CNN) 

architectures and the publishing of several large-scale annotated datasets, most importantly, ImageNet 

[1]. Models pretrained on large scale annotated datasets are widely used in deep learning to achieve 

good results through transfer learning [2]–[5]. Though this paradigm proved to be extremely efficient, 

however, it suffers from a bottleneck, (i.e., a large enough annotated dataset needs to be available to 

achieve competitive results). Hand-annotated datasets are very expensive and time consuming to create, 

especially in specialized domains such as fashion, medicine, and autonomous driving. Even with the 

availability of an annotated dataset, there is still the disadvantage of not being able to utilize the massive 

amounts of unlabeled data being generated every second [6]. Self-supervised learning aims to solve 

these issues present in current supervised paradigms by leveraging and learning from unlabeled data. In 

self-supervised learning, a deep learning model is trained on a proxy/pretext task using unlabeled data. 

The term self-supervised means that, though the data is unlabeled, pseudo labels are automatically 

derived from the data, so the task is self-supervised. This pretrained model is then utilized to improve 

the results on a target/downstream task. Self-supervised learning has gained traction in recent years with 

several benchmarks achieved in the domain [7], [8]. Autonomous driving is one of the main domains 

that could benefit from self-supervised learning due to the massive amounts of street footage that are 

collected continuously using traffic cameras and car dashcams (dashboard cameras). Though this data 

would usually take years to annotate, the hope with self-supervised learning is that it could be used as 

soon as the data is generated. Several works were interested in applying self-supervised learning in this 

domain [9] [10].  

 

ImageNet is primarily used in State-Of-The-Art self-supervised methods in the proxy phase [8], [11], 

[12]. Though, there is no need for its annotations, it is still used as the benchmark due to its size, 

availability and spectrum. Most works are continuously focusing on generating competitive results 

using ImageNet as the pretraining dataset. Fewer research efforts were concerned with the implications 

of pre-dominantly using ImageNet in pretraining on complex downstream tasks [9], [13]. Since 

ImageNet is mostly an object centric dataset (i.e., the focus of the image is primarily a single object), it 

is worth investigating whether models pretrained on ImageNet transfer well to multi-object centric 

downstream tasks such as multi-label classification, object detection and segmentation.  

 

In this work, we investigate this question by pretraining a self-supervised model (SimSiam [8]) using 

both a single-object centric dataset (ImageNet) and a multi-object centric dataset (MS COCO [14]). We 

choose the downstream task of multi-label classification to compare the performance of these pretrained 

models to investigate how the nature of the pretraining dataset affects the downstream performance. We 

evaluate the trained models in the downstream task using  CityScapes dataset [15] for autonomous 

driving . Autonomous driving applications require complex scene understanding [16] and the images 

are mostly multi-object centric. The outline of this paper is as follows, in Section 2, we discuss the 

relevant works to our study. Section 3 illustrates the details of our experiment setup including the proxy 

task, the downstream tasks and the used datasets. The results are provided and analyzed in section 4 and 

compared with related work. Finally, in section 5 our conclusions are provided. 

 

2. Background and Related Work  
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Self-supervised learning algorithms can be considered a subset of unsupervised learning. The standard 

self-supervised framework consists of two main components: the proxy/pretext task and the 

target/downstream task [6]. The term self-supervision refers to the proxy task which is supervised but 

the labels are automatically derived from the image data itself. Usually, a self-supervised algorithm is 

applied to a large unlabeled dataset to solve the proxy task. A CNN backbone is used within the 

algorithm to learn how to extract meaningful feature representations through the pretext task. This 

knowledge is then transferred to the target task, which is commonly applied on a small, labeled dataset. 

In this way, self-supervised learning can leverage the immense amount of unlabeled data that is 

constantly generated. This area of research has caught the interest of many researchers and witnessed a 

surge in State-Of-The-Art proposals in recent years[7]–[9]. Self-supervised learning can be divided into 

two categories: discriminative and generative [17]. In this work we are more concerned with the 

discriminative self-supervised algorithms. 

 

Most self-supervised algorithms utilize a Siamese network to solve the self-supervised task. A Siamese 

network is an architecture that consists of identical subnetworks sharing the same weights (2 

subnetworks or more). In earlier works, the pretext task involved generating explicit pseudo labels.  The 

Jigsaw task [18] divided an image into 9 tiles and shuffled them around according to a random 

permutation. The CNN architecture was used to solve the puzzle by predicting the correct permutation. 

This was applied using a 9-way Siamese network. In this task, the “pseudo label” is the permutation. 

The label is explicitly generated and utilized. Several other works followed this pattern such as the 

rotation [19] and relative patch location [20]. Even though these works were efficient as a proof of 

concept for the self-supervised paradigm, they suffered from a specialization issue. It was observed that 

the features extracted from the convolutional layers closer to the classification layer would be more 

specific to the task at hand (e.g. solving the jigsaw puzzle) instead of having the generalization ability 

required to work well in transfer learning. This pushed the research in the direction of contrastive 

learning. 

 

Contrastive learning was researched as a method to overcome the problem of degradation of feature 

representation quality that existed in classical self-supervised methods. This was achieved by designing 

the proxy task with the objective of feature representation learning. In most contrastive learning 

algorithms, a Siamese network is used to push the feature representations of similar images together and 

push the feature representations of dissimilar images away from each other [11], [21]. In this paradigm, 

data augmentation is applied to an image to generate a transformed view of the same image. The 

Siamese network is fed with two views of the image and their feature representations are extracted and 

contrasted. If both views are of the same image (i.e., the positive example), then, the contrastive loss 

will push the Siamese network to extract their feature representations to be more similar, otherwise, in 

the case of a negative example (i.e., two different images), the feature representations will be pushed 

apart. PIRL [21] is one of the earlier contrastive self-supervised methods that utilized this paradigm. 

Figure 1 shows a comparison from [21] between  the standard pretext task and the one proposed in 

PIRL where “I” is the original image, and “It” is the transformed view of the image. 

 

Several State-Of-The-Art contrastive methods were proposed after PIRL such as SimCLR [11] and 

MOCO [12]. These algorithms proved very efficient and generated competitive results. However, they 

had a significant drawback which is the need to generate a large-enough pool of negative samples to 

learn well. To overcome this, contrastive learning algorithms rely on the use of very large batch sizes or 

memory banks. Both solutions are computationally expensive. Non-contrastive methods [7], [8]emerged 

as a possible way to solve this issue. Where the authors in [7], [8] found that a Siamese network could 
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be taught to extract meaningful representations using positive samples only, thus reducing the 

computational overhead. 

 

 
 

Figure 1. Comparison between standard self-supervised method and PIRL [21] 

 

SimSiam [8] is one of these  non-contrastive self-supervised learning techniques. In SimSiam, the task 

is essentially to predict the feature representation of an image from another view of the same image. 

Figure 2 shows the architecture of “SimSiam”. Different data augmentation techniques are applied 

sequentially to image “x” to generate two augmented views of the image “x1” and “x2” each generated 

with random parameters for the augmentation operation. These two views are fed into a two-way 

Siamese network with a CNN backbone such as Res50. The CNN backbone is represented by encoder 

“f” in the figure. The encoded output is then fed to a prediction layer which is a multilayer perceptron 

(MLP). The negative cosine similarity between the predicted output from the first branch and the 

encoded output from the second branch is calculated and the error is backpropagated to update the 

weights accordingly. In practice, both encoded outputs are fed to predictor “h” and the average cosine 

similarity is acquired. Additionally, the authors found that applying a stop-gradient operation on the 

second branch was essential for the model to avoid collapsing. Model collapse occurs when the self-

supervised algorithm generates the same feature representations for all images in order to minimize the 

objective function. A stop-gradient operation means that the output of the second branch is treated as a 

constant and does not contribute to the gradient calculation used in backpropagation.  

 

Downstream tasks such as image classification and object detection are typically used to evaluate the 

generalization ability of the weights learnt by the self-supervised model. According to [17], there are 

several paradigms for testing this generalization ability. The two main paradigms are finetuning and 

linear classification. Finetuning means that the weights of the CNN backbone trained on the self-

supervised task are extracted and loaded to the downstream task model that contains the same backbone 

(e.g., Res50). The backbone resumes training such that the weights learnt during the proxy task are used 

as initialization. This finetuning paradigm generates competitive results, however, it is not considered 

an accurate understanding of how good the feature representations are on their own. In the linear 

classification evaluation paradigm, the weights of the CNN backbone are used without finetuning to 



66 Yomna A. Kawashti et al. 

extract the feature representations of a classification dataset. A linear classification model such as SVM 

or logistic regression is trained on these extracted features and the testing accuracy is evaluated.  

 

 
 

Figure 2. SimSiam Architecture [8] 

 

Image classification can be divided into two main categories: Single Label Image Classification (SLIC) 

and Multi-Label Image Classification (MLIC) [22]. In SLIC, each image represents a single 

category/class and thus has a single label. In MLIC, each image contains several categories and thus has 

several labels. This means that, by definition, the task of multi-label classification requires the trained 

models to have more complex scene understanding than single label classification. The prevalent 

paradigm in self-supervised learning is to pretrain on ImageNet (an object centric dataset) and thus 

focus in the downstream task on ImageNet linear classification. Although other complex downstream 

tasks such as object detection and segmentation are also evaluated, however, they are rarely given the 

focus in the design of the pretraining framework. 

 

Some researchers investigated the idea of changing the pretraining dataset or altering the self-supervised 

algorithm to better accommodate multi-object downstream tasks [9], [23]. In [13], the authors 

investigated the effect of pretraining transformer-based self-supervised models using different subsets 

of ImageNet and compared these results with using COCO (multi-object centric). They evaluated the 

transfer performance for downstream tasks mainly using image classification on the iNaturalist dataset 

as well as object detection and instance segmentation on the COCO dataset. The authors found that the 

COCO pretrained model achieved better results than the ImageNet pretrained model in the case of 

downstream evaluation on the same pretraining dataset (COCO). In [9] the authors proposed Multi-

instance Siamese network (MultiSiam). MultiSiam is an alteration to the self-supervised task design that 

takes into account the existence of multi-objects in the same image by combining several techniques. 

These techniques include Intersection Over Union (IoU) filtering for generating image crops, feature 

map alignment and clustering. The authors also experimented with using large scale autonomous 

driving datasets in pretraining instead of ImageNet and found that it achieved better overall 

performance. A summarized comparison in both papers’ setups is provided in Table 1 as well some of 

each papers’ best acquired results for COCO object detection. It is important to note that dissimilar to 

our work in which we used multilabel classification for the downstream valuation on PascalVOC and 

CityScapes, the authors in [9] used the tasks of object detection for PascalVOC and semantic and 

instance segmentation for CityScapes. 
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Table 1. Comparison between multi-object centric related works 

Work 
Self-Supervised 

Algorithm 
Pretraining Dataset Downstream Dataset 

COCO Downstream 

Performance (𝑨𝑷𝒃) 

Chen et al. 

[9] 
MultiSiam Waymo, SODA10M 

PascalVOC, CityScapes, 

BDD100K, COCO 
42.1 

El-Nouby et 

al. [13] 

BeiT 

 SplitMask 

IN 1%, 10% and 

Full IN, COCO 

iNaturalist, Food101, Stanford 

Cars, DomainNet subsets, COCO 
46.8 

 

3. Experiment Setup  

 

In this work, we use SimSiam as our self-supervised algorithm. We use a complex scene understanding 

task as our downstream task which is multi-label classification. This task is inherently multi-object 

centric. We investigate the question of whether using a single-object centric dataset such as ImageNet 

[1] for pretraining would translate to better downstream performance than pretraining on multi-object 

centric dataset such as COCO [14]. Additionally, we further investigate the effect of such training on an 

autonomous driving dataset. This work differs from [13] as we focus on a non-contrastive self-

supervised algorithm (SimSiam) instead of using transformer-based self-supervised algorithms. We also 

evaluate the transferability of the learnt models to a different domain dataset such as CityScapes [15]. In 

addition, our experiments differ from [9]since we use the original self-supervised algorithm (SimSiam)  

without any alterations. In the next sections we provide the details of our experiment setup including the 

proxy task setup (SimSiam), the downstream setup (MLIC) and the datasets used.  

 

3.1 Proxy Task Setup 

 

In the proxy task, we use SimSiam [8] as our self-supervised algorithm as provided in [24]. As 

previously mentioned, In SimSiam, several randomized data augmentations are applied to a given image 

to generate two views of it. The data augmentations applied are: random resized crop, horizontal flip, 

color jitter, random grayscale and random gaussian blur. We use Res18 as the CNN backbone since the 

datasets used in the pretraining phase are medium sized, so a shallower architecture performs better 

(Res50 is usually used with large datasets such as full ImageNet (ImageNet-1k) however Res18 is 

relatively used to train smaller datasets).  

 

3.1.1 Proxy Task Datasets 

 

We run the SimSiam training algorithm twice using two datasets: ImageNet100 (single-object centric 

dataset) and COCO (multi-object centric dataset). Table 2 shows the training configurations used in the 

pretext task to train both datasets. 

 
Table 2. SimSiam pretraining hyperparameters 

Hyperparameter Value 

Batch Size 512 

Number of Epochs 100 

Optimizer SGD 

CNN Backbone Res18 

 

ImageNet100 is a subset of ImageNet [1] that consists of 100 randomly chosen classes out of the 

original 1000 classes. Each category in ImageNet has approximately 1,300 images. There are several 

versions of ImageNet100. However, the most common version is the one used in [25]which we follow 
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in our experiments. This version contains 126,689 images in the training set. As we are working on self-

supervised learning, this dataset is used without its labels. Figure 3a shows an ImageNet100 image 

sample. 

 

Microsoft Common Objects in Context (MS COCO) [14] is a benchmark dataset used for object 

recognition, detection and segmentation. It is, by definition, a multi-object centric dataset. There are 

several versions of COCO including “COCO2014” and “COCO2017”. In our work, we use the 2017 

version. It consists of 118, 287 images in the training subset and 5,000 images in the validation subset. 

In training SimSiam, we add both subsets to close up the size gap between ImageNet100 and 

COCO2017; so we train on COCO2017 “trainval” subset which consists of 123,287 images. Figure 3b 

shows an MS COCO image sample. 

 
 

                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Downstream Task Setup: MLIC 

 

The weights of the SimSiam CNN backbone at epoch 100 are utilized to extract the feature 

representations for the downstream task datasets. Following the benchmark paradigm in [17], first, the 

CNN weights are loaded into the same CNN architecture as that of the encoder of the pretext task (i.e, 

the same CNN architecture as the pretext task without the Siamese structure and the MLP layers). The 

images in the training subset of the downstream dataset are fed into the CNN architecture and the 

feature representations for each training image is extracted from the last convolutional layer without any 

weight updates applied to the CNN model. Average pooling is applied on the extracted feature map to 

generate ~9k features for each image. These features, combined with the corresponding labels are used 

to train a linear SVM model. The same feature extraction method is used on the testing subset of the 

downstream dataset. Lastly, the trained SVM model is used to predict the labels of the extracted 

features from the testing subset. Mean Average precision (mAP) is  used to evaluate the accuracy since 

this is a multi-label classification task. It is calculated according to equation 1 where the average 

precision “AP” is acquired for each class and then the mean is calculated for “n” which denotes the total 

number of classes. 

𝑚𝐴𝑃 =  
1

𝑛
∑  𝐴𝑃𝑘

𝑘=𝑛
𝑘=1          (1) 

 

3.2.1 Downstream Task Datasets 

 

(b) (a) 

Figure 3. Original samples from the pretraining datasets we used where (a) shows an 

ImageNet100 sample [1]  and (b) shows an MS COCO sample [14]. 
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We evaluate each pretrained model on two downstream datasets: PascalVOC [26] and CityScapes [15]. 

 

Pascal Visual Objects Classes (PascalVOC) [26] is a benchmark dataset used for object class 

recognition. It contains 20 categories. It is a multi-object centric dataset as multiple categories and 

objects exist in the same image. We use the 2007 version of PascalVOC. The “trainval” subset is used 

for training SVM. This subset consists of 5,011 images while the test subset consists of 4,952 images 

and is used for evaluation. Figure 4 shows a sample image from PascalVOC and the muli-labels 

associated with it. 

 

 

labels 

dining table 

person 

chair 

bottle 

Figure 4. PascalVOC [26]  Image Sample with its labels 

 

CityScapes [15] is an urban scenes benchmark dataset widely used in autonomous driving applications. 

The dataset describes 30 classes. There are several subsets associated with CityScapes. We use the fine 

annotated version of CityScapes where we train the SVM model on the training subset that consists of 

2,975 images and evaluate the model on the validation subset that consists of 500 images. Figure 5 

shows a sample image from CityScapes and the multi-labels associated with it. 

 

Figure 5. CityScapes [15]  Image Sample with its labels 
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4. Results and Discussion 

 

In this section, we present the results acquired from each pretraining experiment on both downstream 

datasets. Table 3 shows the SVM downstream accuracies on the PascalVOC dataset. For base-reference, 

we added the SVM classification results provided in [27] when SimSiam was trained for 100 epochs 

using the full ImageNet dataset (ImageNet-1k). It is important to note that there are significant 

differences in the setup we used such as the CNN backbone due to the scale of the pretraining datasets.  
 

Table 3. PascalVOC SVM results 

Pretraining Dataset SimSiam CNN Backbone SVM Downstream Accuracy (mAP) 

ImageNet-1k [8][27] Res50 84.64 

ImageNet100 Res18 56.2 

COCO Res18 57.6 

 

From these results, we can see that SimSiam pretrained on COCO (multi-object dataset) achieved 

higher performance than ImageNet100 when transferred to a multi-object downstream dataset such as 

PascalVOC. We believe this improvement is also significant considering that the COCO dataset was 

smaller in size than the ImageNet100 (i.e., SimSiam was trained on ~123k versus ~126k respectively). 

This improvement in performance proves that the complete reliance on ImageNet for pretraining should 

be revisited and not taken as granted. Pretraining on full ImageNet achieved higher performance than 

COCO which was expected due to the large difference in size between the two datasets (ImageNet-1k 

consists of ~1.2 million images while COCO consists of ~123k images). These experiments point 

towards the effectiveness of substituting the ImageNet as a pretraining dataset in case of a multi-object 

downstream task, however, the scale of the pretraining dataset needs to be considerably large for a 

significant improvement. 

 

In our next downstream evaluation, we examined the effects of pretraining on COCO and ImageNet100 

for a multi-object dataset in a different domain such as the autonomous driving domain. Table 4 shows 

that SimSiam pretraining on COCO had higher transferability than pretraining on ImageNet100. This  

confirms the pattern established in the previous experiment on PascalVOC and further points toward the 

inaccurate  use of ImageNet as a default pretraining dataset in autonomous driving applications. 
 

Table 4. CityScapes SVM Results 

Pretraining Dataset SVM Downstream Accuracy (mAP) 

ImageNet100 57.4 

COCO 58.3 

 

5. Conclusion 

 

Self-supervised learning holds great promises for the future of deep learning in computer vision in 

general and for autonomous driving applications specifically. In this work, we focused on the effects of 

using a multi-object centric dataset in self-supervised learning pretraining instead of using ImageNet 

which is the current prevalent paradigm in self-supervised literature. We pretrained SimSiam using 

ImageNet100 (single-object centric) and COCO2017 (multi-object centric) using the same settings. We 

used multi-label classification as our downstream task to evaluate and compare the performances of 

both pretrained models. We applied linear classification using SVM on the PascalVOC dataset which is 

a benchmark setting for self-supervised learning multi-label classification. For further analysis, we also 
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used CityScapes; an autonomous driving dataset to evaluate the two models. We reported the 

downstream results and found that the COCO pretrained model consistently outperformed ImageNet100 

pretrained models on both downstream datasets. The increase was approximately +1 percent in both 

cases (56.2 versus 57.6 mAP in the case of PascalVOC and 57.4 versus 58.3 in the case of CityScapes). 

This is significant because COCO is smaller in size than ImageNet100, nevertheless, it achieved higher 

results. We conclude that using multi-object centric datasets for self-supervised learning pretraining is 

essential when applied to a complex downstream dataset. These results also support the need for more 

research which focuses on the design of self-supervised algorithms that work best with multi-object 

centric datasets instead of the default focus on ImageNet. 
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