A SYSTEMATIC REVIEW ON TEXT SUMMARIZATION OF MEDICAL RESEARCH ARTICLES

Document Type : Original Article

Authors

1 Computer Science Department, Faculty of Computer and Information Sciences , Ain Shams University

2 Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt. Laboratoire Interdisciplinaire de l'Université Française d'Égypte (UFEID LAB), Université

3 Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt.

Abstract

The term "Medical Text summarization" refers to the process of extracting or collecting more useful information from medical articles in a concise manner. Every day, the count of medical publications increases continuously, and applying text summarization techniques can minimize the time needed to manually transform medical papers into a summarized version. This study's goal is to present a summary of recent works in medical text summarization from 2018 to 2022. It includes 15 papers covering different methodologies such as Clinical Context-Aware (CCA), Prognosis Quality Recognition (PQR), Bidirectional Encoder Representations From Transformers (BERT), Generative Adversarial Networks (GAN), Recurrent Neural Network (RNN), and Sequence-To-Sequence (seq-2-seq) model. Also, the paper describes the newest datasets (PubMed, arXiv, SUMPUBMED, Evidence-Based Medicine Summarization, COVID-19 Open Research, BioMed Central, Clinical Context-Aware, Biomedical Relation Extraction Dataset, Semantic Scholar Open Research Corpus, and Prognosis Quality Recognition) and evaluation metrics (Recall-Oriented Understudy for Gisting Evaluation (ROUGE), F1 Metric, Bilingual Evaluation Understudy (BLEU), BERTScore (BS), and Accuracy) used in medical text summarization.

Keywords