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Abstract: Creating error-free software artifacts is essential to increase software quality and potential 

re-usability. However, testing software artifacts to find defects and fix them is time consuming and 

costly, thus predicting the most error-prone software components can optimize the testing process by 

focusing testing resources on those components to save time and money. Much software defect 

prediction research has focused on higher granularity, e.g., file and package levels, and fewer have 

focused on the method level. In this paper, software defect prediction will be performed on highly 

imbalanced method-level datasets extracted from 23 open source Java projects. Eight ensemble 

learning algorithms will be applied to the datasets: Ada-Boost, Bagging, Gradient boost, Random 

Forest, Random Under sampling Boost, Easy Ensemble, Balanced Bagging and Balanced Random 

Forest. The results showed that the Balanced Random Forest classifier achieved the best results 

regarding recall and roc_auc values. 
 

Keywords: Method-level software defects prediction, Ensemble Learning, Balanced Ensemble 

Learning, Imbalanced dataset, ELFF datasets. 

 

 

1. Introduction 

 

The testing process is very crucial in the Software Development Life Cycle (SDLC), however, it 

consumes a significant amount of resources (roughly 40% of the overall development project costs) 

[1] consequently much research focused on improving the testing process to achieve the best resource 

https://ijicis.journals.ekb.eg/ 
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utilization. Machine learning techniques were used intensively in the field of software testing by 

predicting defective software components or classifying software components into defective e.g. 

containing one or more defects or non-defective e.g. defect-free, pursuing this approach, the limited 

testing resources can be dedicated to the software components predicted to be defective. The 

classification technique depends on software features or attributes to divide the inputs to the 

classification process into two classes: defective or nondefective. Those software metrics or attributes 

might be extracted from the code itself, such as the number of lines of code (NOLC), or from the 

process by which the software was created, such as the number of developers engaged in creating 

software.  

 

Many studies focused on predicting software defects at the file or class level, where a file may contain 

thousands of lines of code and a class may contain tens of methods, implying that more effort is 

required to locate the defective classes or methods, and consequently predicting defects at the method 

level can be more efficient and resource-saving [2]. Nonetheless, fewer studies focused on the 

method-level defect prediction; Hall et al [3] found that from 2000 to 2012, only 12% of defect 

prediction models were performed at the method, function or procedure level. Luka et al.[4] tried to 

predict software defects at the method level, and they concluded that software defect prediction at the 

method level is still an open challenge. The reason why most of the research done in the area of 

software defect prediction focused on a class or a file level is the lack of reliable software defect 

datasets at the method level; to address this problem, Thomas Shippey et al.[5] provided the Finding 

Faults Using Ensemble Learners (ELFF) datasets containing software defect information related to 

the method level, which are used in this paper. Datasets consist of negative and positive samples e.g. 

non-fraudulent versus fraudulent transactions, non-diabetic versus diabetic person or non-defective 

software components vs. defective ones. The datasets are called balanced if they have a relatively 

equal number of both samples [6]; however, this is not the case in the real world problems where the 

positive class instances, which are usually the ones of interest, are much less represented than the 

negative class instances, causing the prediction model to ignore the less represented class. Many 

techniques have been used to overcome the imbalance of the datasets [7]; Resampling is one of the 

most commonly used techniques to handle this problem [8][9][10]. Resampling technique can be done 

either by under-sampling the majority class or over-sampling the minority class, so both classes will 

have relatively the same number of instances. Ensemble learning, also used to handle the imbalance 

of the datasets, refers to a group (or ensemble) of base learners or models who work together to 

improve the final prediction. Due to the significant variation or bias, a single model, also known as a 

base or weak learner, may not perform effectively on its own; when weak learners are combined, they 

can produce a strong learner, as their combined bias and variance are reduced, resulting in improved 

model performance. Bagging and Boosting are common types of ensemble learning methods. 

Bagging, also known as Bootstrap aggregating, is an ensemble learning strategy that depends on 

selecting a random sample of data from a training set with replacement meaning that the individual 

data points can be chosen multiple times, then weak learner(s) are trained individually after multiple 

data samples are collected. Depending on the type of task, regression, or classification, the average 

or majority of those predictions yield a more accurate estimate. Boosting on the other hand, is an 

ensemble learning strategy for minimizing training errors by combining a group of weak learners into 

a strong learner, a random sample of data is chosen, fitted with a model and then trained progressively 
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and each model attempts to compensate for the shortcomings of its predecessor, each iteration 

combines the weak rules from each classifier to generate a single, strong prediction rule, interested 

readers can find more details about ensemble learning techniques here [11]. 

 

In this paper, the gap created by the lack of software defect prediction at the method level is tried to 

be filled by conducting software defect prediction using the ELFF method level datasets, which 

contain 63 datasets created from 23 open source Java projects selected with restricted conditions, 

where each dataset contains 33 source code metrics. 

 

2. Related work 
 

In this section, related literature to software defect prediction at the method level, software defect 

prediction using ensemble learning techniques, and related work to address the problem of 

imbalanced datasets will be listed. 
 

2.1.Related work to the software defect prediction at method level 
 

Giger et al.[12] applied three approaches to conduct software defect prediction: using code metrics 

only, using change metrics only, and using  a combination of them. They used precision, recall, and 

Area Under the Curve (Roc_AUC) to evaluate the prediction model in their work, and they achieved 

a recall of 85% and a precision of 95% by combining metrics and a random forest classifier. They 

also discovered that there is no significant difference between classification algorithms. Luca et al.[4] 

tried to evaluate the results in [12] by replicating the same methodology on different systems and 

time-spans; they found that the approach on [12] can be generalized with the same results, and then 

proposed a change to the methodology to overcome the limitations of the Giger et al. [12] approach. 

To overcome those limitations, Luke et al.[4] re-evaluated the performance of [12] method using data 

from subsequent releases, i.e., release-by-release validation, and applied the same metrics and the 

same machine learning algorithms and feature selection approaches. When compared to the random 

classifier, they discovered that the results dropped dramatically. 

 

Hata et al.[2] also compared bug prediction at the method level, file level, and package level regarding 

effort-based evaluation using module histories using: first, code-related metrics; second, process 

metrics; and third; organizational metrics issues. They found that in 20% of the code, the number of 

bugs found at the method level exceeded those found at the file and package levels and concluded 

that method level prediction is more effective than package level and file level prediction when 

considering efforts. 

 

Rainer Niedermayr et al.[13] tried the Inverse Defect Prediction (IDP) method; instead of predicting 

the most error-prone methods, they tried to predict the less likely error-prone methods or methods 

that are too trivial to contain bugs, and they used source code metrics to identify low- fault-risk 

methods.To identify a low-fault-risk method, they used the Association Rule and to overcome the 

imbalance of the dataset, they used the synthetic minority oversampling technique (SMOTE) 

technique. Their study showed that IDP can successfully identify methods that are not fault-prone; on 
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average, 31.7% of the methods (14.8% of the SLOC) matched by the strict classifier contain only 

6.0% of all faults. 

 

2.2.Related work to the software defect prediction using ensemble learning techniques 

 

Sammar Mustafa et al.[14] performed the defect prediction at the class level with several voting 

techniques using weighted majority voting (WM), randomized weighted majority voting (RWM), 

cascading weighted majority voting (CWM), and cascading randomized weighted majority voting 

(CRWM). They used three types of metrics: static code metrics, change metrics, and a combination 

of both. The datasets used were extracted from four Java open source projects with a highly 

imbalanced distribution of instances. The change code metrics provided the highest results regarding 

model evaluation metrics, with an f- measure of 98.6%, an accuracy of 74.9% and an auc of 68.5%. 

 

FYucalar et al.[15] tried to empirically study ten ensemble predictors compared to baseline predictor 

performance; they conducted their study on 15 NASA projects using the Weka workbench and 

evaluated the prediction model in terms of f-measure  and area under the receiver operating 

characteristic curve (AUC). They concluded that: first, ensemble algorithms can achieve good results, 

second, increasing the number of base predictors in ensemble algorithms leads to better results, and 

third, the combination of ensemble algorithms reduces the false alarm rate. 

 

Sweta Mehta & K. Sridhar Patnaik [16] applied several machine learning techniques, including 

ensemble learning algorithms such as: XGBoost, Stacking, Ada-Boost, and Gradient-Boost, to 

perform the software defect prediction on datasets from NASA and the PROMISE repository, to 

address the high dimensionality of the datasets, they used several feature selection techniques, while 

the problem of high imbalance in the dataset was addressed using the SMOTE oversampling 

approach.They concluded that the Stacking ensemble learning method and XGBoost provided the 

best results among the techniques used in their research. 

 

Yakub Kayode Saheed et al.[17] implemented seven ensemble machine learning models for SDP: the 

Cat Boost, Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting 

(XgBoost),Boosted Cat Boost, Bagged Logistic Regression, Boosted LGBM,and Boosted XgBoost 

in addition to separate base model using Logistic Regression. They used in their research three public 

datasets from the PROMISE repository and concluded that the proposed ensemble method’s 

performance was significantly better and more competitive than the individual base classifier Logistic 

Regression model for all defect datasets used in the research. 

 

Abdullateef O. Balogun et al.[18] proposed a combination of synthetic minority oversampling 

technique (SMOTE) and ensemble classifiers (Bagging and Boosting) in addition to using Decision 

Tree (DT) and Bayesian Network (BN) algorithms as base classifiers for predicting software defects. 

Six datasets from the NASA repository were used with unbalance ratios ranging from 2% to 7% and 

with different numbers of features and modules. First SMOTE oversampling was applied to the 

datasets, then the four classifiers with 10-fold cross validation were applied to the oversampled 

datasets; their results showed that the use of SMOTE and homogeneous ensemble not only solved the 
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issue of class imbalance but also enhanced the base classifier prediction performance. It is worth 

mentioning that the way of re-sampling followed by [18] was criticized by [19], as the later paper 

considered that a common flaw usually happens in such situations where the entire dataset is 

over/under sampled before applying cross validation, this approach may lead to overly optimistic 

results, while the right way to over/under sample the data according to [19] is within the cross 

validation folds. 

 

Inas Abuqaddom and Amjad Hudaib [20] Used SMOTE oversampling technique along with Cost 

Sensitive Learning (CSL) and the Ada-Boost algorithm to handle imbalanced dataset issues. They 

applied their approach to four datasets from the PROMISE repository with imbalance ratios ranging 

from 9.84% to 19.35%. They compared their approach to three other approaches: Decision Tree (DT), 

Ada-Boost with DT as its base classifier, and SMOTE-Ada-Boost. Their findings showed that their 

proposed approach improved the prediction of software defects.       

 

Aljamaan and A.Alazba [21] investigated seven ensemble learning classifiers in defect prediction, 

which were: Random Forest, Extra Trees, Ada Boost, Gradient Boosting, Heist Gradient Boosting, 

XGBoost, and Cat-Boost. They performed their approach on 11 publicly available MDP NASA 

software defect datasets, and their results showed that Random Forest and Extra Trees classifiers 

performed the best while Ada-Boost performed the worst. 

 

Saifan et al. [22] conducted two ensemble learning algorithms (Bagging and Boosting) and two single 

classifiers (KNN and SVM) along with four feature selection techniques, which were Principal 

Component Analysis (PCA), Pearson’s correlation, Greedy Stepwise Forward Selection, and 

Information Gain (IG). They applied their approach to five datasets obtained from the PROMISE 

software repository and concluded that ensemble methods can improve a model’s performance 

without any feature selection techniques. 

 

Mohammad Zubair Khan [23] presented a Hybrid Ensemble Learning Technique (HELT) which was 

performed on eight datasets from the PROMISE repository with an imbalance ratio ranging from 

2.1% to 35.2%. According to their study, the HELT technique included the features selection 

approach, and two algorithms (Classifier-Attribute-Eval and Ranker algorithms) from the Weka tool, 

then K-Mean clustering was applied to the datasets, and SMOTE oversampling was used to balance 

the data. Ada-Boost and Bagging ensemble techniques were used with Naive Bayes, Support Vector 

Machine and Random Forest classifiers were used as base classifiers for both ensemble techniques. 

Their results showed that Ada-Boost with SVM and Bagging SVM performed the best in terms of 

accuracy, recall, precision, and auc. The HELT approach also showed a higher accuracy rate 

compared to other machine learning techniques. 

 
2.3.Related work to address the problem of imbalanced datasets 

 

Most machine learning models performed in SDP face the problem of imbalanced datasets where 

defective instances are much less common than non-defective ones, which makes the prediction 

model biased towards the class with the highest number of instances, giving misleading results. Many 
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techniques were used to address the problem of imbalanced datasets, such as cost-sensitive classifiers, 

ensemble learning approaches, and re-sampling techniques. 

 

Malhotra and J.Jain [24] conducted an investigation into software defect prediction at the class level 

using three datasets from three open-source Java projects from the PROMISE library. To overcome 

the problem of imbalanced datasets in their research, they used cost-sensitive classifiers. Their 

research adopted the J48 (decision tree) algorithm and compared it with three ensembles: Boosting-

Based ABM1, Bagging-Based Bag, and Random Forest-based RSS. A subset of features was chosen 

using the Correlation Feature Selection (CFS) method. They concluded that using a cost-sensitive 

classifier performed better with machine learning algorithms than without it. The re-sampling 

technique, on the other hand, is a popular approach used in handling imbalanced datasets, KE Benin 

et al.[25] tried to investigate six re-sampling techniques: synthetic minority over sampling technique 

(SMOTE), borderline SMOTE ,safe-level SMOTE, Oversampling using adaptive synthetic 

(ADASYN), random over sampling (ROS), and random under sampling (RUS). The six approaches 

were conducted on 40 releases of 20 open source projects with an imbalance ratio between the ranges 

of 3.8 to 17.46%, and two types of metrics were used (process metrics and static code metrics). They 

used several machine learning algorithms and concluded that: first, resampling methods significantly 

improved the performance of the prediction model in terms of all model metrics except for auc (Area 

Under the Roc Curve); second the performance of resampling method depends on the imbalance ratio 

of the dataset (ratio of defects and clean instances); third, random under-sampling and border-line 

SMOTE provided more stable results across several performance measures and prediction models. 

 

Abdullah Alsaeedi et al.[26] presented a study to compare several machine learning algorithms 

(Bagging, Support Vector Machines , Decision Tree , and Random Forest ) using 10 NASA datasets; 

a SMOTE re-sampling technique was used to handle the imbalanced datasets. To evaluate the 

performance of different classifiers, accuracy, f-measure, and roc_auc metrics were used. Their 

outcomes showed that Random Forest, Ada-Boost with Random Forest, and Bagging with Decision 

Tree generally performed well, but they did not reach a decisive result about the best performing 

algorithm as some classifiers performed well on some datasets and poorly on others. 

 

Shatnawi and Ziad [27] presented a guided oversampling technique in which a module is duplicated 

in the dataset depending on the number of defects, and then the resulting dataset is oversampled. Not 

only the guided oversampling approach was used, but also SMOTE oversampling was used with 

different values of minority class duplication (100%, 200%, 300%, 400% and 500%). The prediction 

models are first applied to the original dataset without resampling and then to the processed dataset 

after resampling. They found that the re-sampled datasets with all re-sampling techniques 

outperformed the datasets with no re-sampling in terms of all prediction model metrics. They also 

found that their proposed duplicated and re-sampled technique provided better results with and 

without re-sampling and they also found that for the five classifiers used, their technique had better 

performance for duplicated without re-sampling datasets, meaning that their proposed technique 

outperformed the well-known SMOTE .                                            

 

Thanh Tung Khuat and My Hanh Le.[28] used the random under-sampling technique to address the 
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problem of imbalanced datasets and used several machine learning algorithms through three steps: 

first, a sampling step in which majority class samples in the original dataset are split into bins using 

random under sampling, second, a training step in which each base classifier is trained on the balanced 

datasets that resulted from the previous step, and third, final classifier is constructed using the results 

of the base classifier and the majority voting rule. They conducted their study on seven datasets from 

the PROMISE repository of software defect databases, with a ratio of defective instances ranging 

from 11.36% to 33.59%. Using f-measure, they found that their ensemble model performed better on 

re-sampled datasets than non-resampled datasets and outperformed base classifiers on both resampled 

and non-resampled datasets. 

 

Hamad Alsawalqah et al.[29] used a hybrid technique of SMOTE oversampling and ensemble 

classifiers to perform software defect prediction on four public benchmark datasets from the 

PROMISE repository, with a ratio of defective modules ranging from 9.83% to 19.35%. In the first 

stage of their study, they applied to the datasets three commonly used classifiers: Naive Bayes (NB), 

Multilayer Perceptron (MLP), and C4.5 decision trees, with the 10-fold cross validation technique. 

The second stage was to apply three ensemble classifiers (Random Forest, Bagging, and Ada- Boost) 

to enhance the prediction results from the previous step using Decision Tree as a base classifier that 

performed the best in the previous stage, and the final step was to combine the ensemble technique 

with the best results (Ada-Boost) with SMOTE. The amount of oversampling using SMOTE ranged 

from 20% to 200%. Their results showed that their proposed approach had better quality results than 

the other classification algorithms. 

 

Haotian Yang and Min Li [30] presented a hybrid approach of SMOTE-Tomek re-sampling and the 

XGBoost algorithm and applied their technique to 10 NASA datasets and compared their approach 

with different re-sampling techniques and classification algorithms. They concluded that their 

approach performed better than the other approaches in terms of auc and f-measure. 

 
3. Research gaps and contributions 
 

Bowes et al.[31] used the ELFF tool provided by the ELFF paper authors to predict faults at an 

industrial level by plugging the tool into the IntelliJ IDE, which enables developers to perform regular 

defect prediction on their Java code. ELFF datasets were also used in a regression machine learning 

model where the number of defects in the newer software version was predicted based on bug-related 

information obtained from the older version [32]. ELFF class-level datasets were also used in [33] to 

investigate time and defect velocity in relation to the defect density of a class using the defect density 

correlation technique. 

 

F. Yang et al.[34] proposed a software defect prediction at the level of method call sequences, while 

Thomas Shippey et al.[35] proposed a semi-supervised model named DPCAG for the defect 

prediction task. From the previous literature review, it is found that ELFF method-level datasets were 

not used in predicting within-project software defects based on the ELFF datasets bug related metrics, 

nor were they used to investigate the impact of ensemble learning techniques on the severe imbalance 

in the dataset. The contribution of this paper will be: 
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1. Investigating the use of ELFF method-level datasets to perform software defect prediction 

using ELFF software metrics. 

2. Investigating the impact of four ensemble learning algorithms (Ada-Boost, Gradient-Boost, 

Bagging, and Random Forest) and their balanced versions (Random Under-Sampling Boost, 

Easy Ensemble, Balanced Bagging, and Balanced Random Forest) on the imbalance of the 

datasets and consequently on the software defect prediction model built on those datasets. 

 
4.  Dataset and features 

 
To provide a reliable dataset at the method level, Thomas Shippey et al. [5] provided the Finding 

Faults Using Ensemble Learners (ELFF) datasets derived from 23 open source Java projects selected 

on multiple criteria by mining the Boa Source-Forge september 2013 open source dataset. The criteria 

used to select the 23 projects were: 

1. To be written in Java. 

2. To be an SVN (subversion version control system) project. 

3. Have a Sourceforge defect tracker. 

4. Have a Sourceforge tracking system. 

5. Have at least 100 fixed defects. 

 

Choosing Java and SVN projects because the research team’s tool was designed to extract defects 

from projects with those criteria, while selecting projects with a certain number of defects was 

intended to achieve a certain degree of balance in the datasets, as a high degree of unbalancing will 

mislead the prediction model and cause bias towards the class with a larger number of instances. The 

software metrics in the ELFF datasets are source code metrics for 69 versions of the 23 projects, and 

they were extracted per release, unlike the approach followed by Giger et al.[12], where software 

metrics related to defects were extracted after a specified time span, which is considered a limitation 

by Luca et al.[4]. 

 

Each method in the ELFF datasets has 33 metrics (see Table 1). ELFF datasets are also highly 

imbalanced, with a much lower percentage of defective methods than non-defective ones. Table 3. 

lists the percentage of defective instances in the ELFF datasets. In any classification process, the first 

three metrics (package, class, and method) will be omitted because it is trivial that they will not affect 

the outcome of the classification process, besides not overwhelming the prediction model with 

unnecessary data.  The rest of the metrics are the well-known source code metrics, such as Halstead’s 

metrics, which are famous static code metrics; interested readers can find more information in [36]. 

The datasets also contain two additional metrics: Flag and Sequence. Flag determines the type of 

method: (setter, getter, abstract...), Sequence on the other hand describes the listing of the method e.g. 

identifier ,block.... The classification process will be applied to 63 datasets out of 69, as six datasets 

in the ELFF datasets have no defective methods. Compared to previous work that performed defect 

prediction at the method level, the ELFF datasets has the largest number of features regarding source 

code metrics, while on the other hand, Giger et al[12] and Luka et al[4] used other types of metrics 

in the dataset they worked on, Table 2. summarizes the distinction between three papers that 

investigated the software defect prediction at the method level. 
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Table 1: ELFF dataset software metrics. 

Metric (Software Feature) Definition 

Package Method’s package 

Class Method’s Class 

Method Method Name 

CC Cyclomatic complexity It is a quantitative measure of the number of linearl independent paths 

through a Program is code 

NOCL The number of comment Lines 

NOS The number of statements 

HLTH Halstead length of method 

HVOC Halstead vocabulary of method 

HEFF Halstead effort, the mental effort required to develop or maintain a program 

HBUG Halstead prediction of a number of bugs 

CREF The number of classes referenced. 

XMET The number of external methods. 

LMET Local methods called using the method 

NLOC The number of lines of code 

NOC The number of comments 

NOA The number of arguments 

MOD The number of modifiers 

HDIF Halstead difficulty to implement a method 

VDEC The number of variables declared 

EXCT The number of exceptions thrown using the method 

EXCR The number of exceptions referenced using the method 

CAST The number of class casts 

TDN Total depth of nesting 

HVOL Halstead volume 

NAND The total number of operands 

VREF The number of variables referenced 

NOPR The total number of operators 

MDN Method: Maximum depth of nesting 

NEXP The number of expressions 

LOOP The number of loops (for,while) 

FLAG Type of method Getter, setter, abstract... 

SEQUENCE Listing of method , e.g (method identifier block) 

DEFECTIVE True for buggy method, False for non-buggy method 
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             Table 2: A comparison of this paper’s proposal to previous works related to defect prediction at Method Level 

Comparisons/Paper Method-Level Bug 

Prediction 

Re-evaluating Method- 

Level Bug Prediction. 

Software Defect Prediction at 

Method Level 

Using Ensemble Learning 

Techniques 

Reference Giger et al [12] Luka Et al [4] This paper 

Year 2012 2018 2023 

Classifiers Bayesian Network  

Support Vector Machine  

Random Forest 

J48(Decision tree) 

Bayesian Network 

Support Vector Machine 

Random Forest 

J48(Decision tree) 

Bagging,Ada-Boost, Gradient 

Boost, Random Forest, Random 

Under Sampling Boost,Easy 

Ensemble, Balanced Bagging and 

Balanced Random Forest 

Number Of Java 

projects 

21 21 23 

Date of extracting 

defects related data 

At the end of a time frame. By release and at the end of a 

time frame 

By release 

Type of metrics Source code, Change 

metrics 

Source code ,Change 

metrics 

Source code metrics 

Number of source 

code metrics 

9 9 29 

Evaluating metrics precision, recall, roc_auc precision, recall, 

f-measure, roc_auc 

precision, recall, roc_auc 

 

5. Methodology 
 

5.1. Selecting the proper machine learning algorithm to build the prediction model on 

the ELFF datasets 

 

Ensemble learning algorithms were used in the literature to perform software defect prediction in 

subsection 2.2 as well as to handle the problem of imbalanced datasets as shown in subsection 2.3.In 

this paper, ensemble learning algorithms with their corresponding balanced versions in the Scikit-

Learn Python library are used. Table 4 lists a short description of the eight algorithms.1 

 

5.2. Selecting the model metrics 

     

To evaluate the performance of the model, a few terms needed to be reviewed: 

1. True positive (TP): positive instances classified as positive (defective methods classified as 

defective). 

2. False positive (FP): negative instances classified as positive (non-defective methods classified as 

defective). 

3. False negative (FN): positive instances classified as negative (defective methods classified as non-

defective).      

4. True negative (TN): negative instances classified as negative. (non-defective methods classified as 

non-defective). 

1 https://scikit-learn.org/stable/modules/Ensemble.html

https://scikit-learn.org/stable/modules/Ensemble.html
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The following model metrics are used to evaluate model performance: 

1. Precision is the fraction of true positives retrieved among the total retrieved instances 

Precision = true positive / (true positive + false positive). 

2. Recall is the fraction of true positives that were retrieved over the total number of true 

positives in the dataset. Recall = true positive / (true positive + false negative). 

3. ROC Area is a ROC curve (receiver operating characteristic curve) that is a graph showing 

the performance of a classification model at all classification thresholds. This curve plots 

two parameters: the true positive rate and the false positive rate. 
 

Table 3: Percentage of the defective methods for each dataset in the ELFF datasets 

Dataset Name Defective% Dataset Name Defective% 

metricsFlagsDefects-autoplot2012 1.241 metricsFlagsDefects-jmol9 5.312 

metricsFlagsDefects-cdk1.1 1.906 metricsFlagsDefects-jmol10 2.009 

metricsFlagsDefects-cmusphinx3.6 0.321 metricsFlagsDefects-jmri2.2 1.0718 

metricsFlagsDefects-cmusphinx3.7 0.214 metricsFlagsDefects-jmri2.4 7.238 

metricsFlagsDefects-controltier3 0.872 metricsFlagsDefects-jmri2.6 1.194 

metricsFlagsDefects-drjava2008 6.940 metricsFlagsDefects-jmri2 0.930 

metricsFlagsDefects-drjava2009- 4.544 metricsFlagsDefects-jppf4.1 1.393 

metricsFlagsDefects-drjava2010 2.145 metricsFlagsDefects-jppf4.2 1.394 

metricsFlagsDefects-eclemma2.1 3.477 metricsFlagsDefects-jppf4 2.727 

metricsFlagsDefects-eclemma2 1.0262 metricsFlagsDefects-jppf5.1 0.599 

metricsFlagsDefects-ejdt3 1.220 metricsFlagsDefects-jppf5 3.0394 

metricsFlagsDefects-genoviz5.4 9.690 metricsFlagsDefects-jtds23072009 1.440 

metricsFlagsDefects-genoviz6.1 10.296 metricsFlagsDefects-jump1.5 0.980 

metricsFlagsDefects-genoviz6.2 3.689 metricsFlagsDefects-jump1.6 0.732 

metricsFlagsDefects-genoviz6.3 2.595 metricsFlagsDefects-jump1.7 0.647 

metricsFlagsDefects-genoviz6 10.175 metricsFlagsDefects-jump1.8 0.713 

metricsFlagsDefects-htmlunit2008 9.0987 metricsFlagsDefects-jump1.9 1.845 

metricsFlagsDefects-htmlunit2009 1.324 metricsFlagsDefects-omegat3.1 0.882 

metricsFlagsDefects-htmlunit2010 3.349 metricsFlagsDefects-omegat3.5 1.645 

metricsFlagsDefects-jedit5.2 0.178 metricsFlagsDefects-omegat3.6 1.536 

metricsFlagsDefects-jikesrvm2 1.1100 metricsFlagsDefects-runawfe3.6 0.015 

metricsFlagsDefects-jikesrvm3.1 0.437 metricsFlagsDefects-runawfe4.1 2.942 

metricsFlagsDefects-jikesrvm3 2.917 metricsFlagsDefects-saros1.0.6 3.787 

metricsFlagsDefects-jitterbit1.1 2.0486 metricsFlagsDefects-tango2008 0.560 

metricsFlagsDefects-jitterbit1.2 0.296 metricsFlagsDefects-unicore1.2 4.211 

metricsFlagsDefects-jmol2 2.928 metricsFlagsDefects-unicore1.3 2.166 

metricsFlagsDefects-jmol3 2.593 metricsFlagsDefects-unicore1.4 7.878 

metricsFlagsDefects-jmol4 5.9384 metricsFlagsDefects-unicore1.5 1.728 

metricsFlagsDefects-jmol5 5.772 metricsFlagsDefects-unicore1.6 5.0453 

metricsFlagsDefects-jmol6 13.143 metricsFlagsDefects-xaware5.1 0.592 

metricsFlagsDefects-jmol7 10.227 metricsFlagsDefects-xaware5 1.621 

metricsFlagsDefects-jmol8 4.592   

 

5.3. Data preparation 

 

Processing data before applying a prediction model is a vital step in machine learning techniques, if 
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data is poorly processed, misleading results will be obtained no matter how good the prediction model 

is. 

 

In this paper proposal, three steps will be applied to prepare data before applying the prediction model: 

dropping id-like metrics, metrics, replacing missing values and normalization: 

1. Dropping id-like features (package, class and method) (see Table 1) as they will not 

affect the classification process and to save processing resources as well. 

2. Replacing missing values: real-world datasets may not contain all values for all 

instances due to problems in recording data or obtaining certain values. The Pandas 

Python library provides several approaches to fill in missing values. In this paper, 

backward filling will be used, which works by filling missing values with the next set 

of data points .2 

3. Normalization: Features (software metrics) in the ELFF dataset differ in range and 

distribution, causing features with high values to have a higher impact on the 

classification results. To unify the range of all numeric data from 0 to 1, normalizing is 

used. 
 

Table 4: A short description of the algorithms used in this paper 

Algorithm Classification: Strategy 

Ada-Boost A meta-estimator that starts by fitting a classifier to the original dataset, then fits multiple 

copies of the classifier to the same dataset, but adjusts the weights of poorly classified 

instances so that succeeding classifiers focus 

more on difficult cases. 

Bagging An ensemble meta-estimators that fit base classifiers to random subsets of the original 

dataset and then aggregate their individual predictions (either by voting or averaging) to 

generate a final prediction. 

Gradient Boosting GB permits the optimization of any differentiable loss function and constructs an additive 

model in a forward stage-wise manner. Each stage involves fitting n classes regression 

trees on the loss function’s negative gradient, 

such as a binary or multi class log loss. 

Random Forest A meta estimator that fits a number of decision tree classifiers on various sub-samples of 

the dataset and uses averaging to improve the predictive accuracy and control 

over-fitting. 

Random Under-Sampling Boost Ada-Boost’s learning technique incorporates random undersampling where each iteration 

of the Boosting 

method, the problem of class balancing is mitigated by randomly undersampling the 

sample. 

Easy Ensemble The classifier is a collection of Ada-Boost learners that were trained on a variety of 

balanced bootstrap examples. Random 

Under-Sampling is used to achieve the balancing. 

Balanced Bagging An extra balance Bagging classifier. where Bagging is implemented with an additional 

step to balance the training set at the appropriate moment using a provided 

sampler. 

Balanced Random Forest A balanced random forest randomly under-samples each 

bootstrap sample to balance it. 

 
2 https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.fillna.html 

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.fillna.html
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5.4. Cross validation technique 
 

Each algorithm will be applied with ten folds of cross-validation, where the data is first divided into 

k segments or folds of equal size; following that, k iterations of training and validation are carried out, 

with each iteration holding out a different fold of the data for validation while utilizing the remaining 

(k-1) folds for learning. 

 

6.  Results and discussion 
 

Figure.1 illustrates the model metrics resulting from applying the Ada-Boost classifier on ELFF 

method-level datasets, which are (except for roc_auc) way below random classifier values. The zero 

value appears a lot for all model metrics, which is the worst value for a model metric. Recalling from 

Subsection 5.2 that a low precision value implies a high false positive rate and a low recall value 

implies a high false negative rate, the Ada-Boost classifier identifies non-defective methods as 

defective and identifies defective methods as non-defective with high rates. 

 

In Figure. 2, the model metrics resulting from applying the Gradient Boost classifier are shown. 

Despite the fact that the results are slightly better than the previous algorithm, they are still way below 

the random classifier. 

 

Bagging classifier application to ELFF method-level datasets results appear in Figure. 3, where the 

model metrics values are getting better than two previous algorithms (except for roc_auc), but still 

not fair results. 

 

On the other hand, Figure. 4 shows results for the Random Forest algorithm, where precision values 

got better than previous classifiers while recall did not get noticeably better. 

 

Moving to the second approach in this research, which is using the balanced versions of the ensemble 

learning algorithms in the Sci-kit-learn Python library, Figure. 5 shows the model metrics values of 

Random Under-Sampling Boost, where recall values noticeably increased and exceeded precision 

values, meaning that false negative values dropped (the number of defective methods classified as 

non-defective), indicating an enhancement in the model's ability to identify defective methods as 

defective. 

 

Results of applying the Balanced-Bagging classifier are shown in Figure .6, The low values of  

precision achieved by this classifier indicate a high false positive value.  On the other hand, recall 

values increased above the random classifier. Also, the model's ability to distinguish between two 

classes (defective and non-defective instances) increased as the values of roc_auc increased.                               

 

The third algorithm in the balanced ensemble learning algorithms used in this paper is the Easy 

Ensemble classifier, whose results are shown in Figure. 7, where fair values for recall and roc_auc 

appeared but with very low values for precision. 
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Finally, Figure .8 shows the values of applying a Balanced Random Forest classifier on ELFF 

datasets, where the best results were achieved among all algorithms used in this paper in terms of 

recall and roc_auc, which means an increase in the model ability to identify defective instances as 

defective and an increase in the model ability to distinguish between defective and non-defective 

methods. 

 

Figure. 9 summarizes  the performance of the eight ensemble learning algorithms used in this paper.It 

shows that the non-balanced versions of the ensemble learning algorithms achieved the worst 

performance regarding recall values, but on the other hand, they achieved better precision results than 

the balanced ensemble learning versions. It  also shows that precision values in the four balanced 

ensemble learning algorithms dropped dramatically while recall values increased,which might be 

caused by re-sampling techniques implemented by the balanced ensemble learning  algorithms where 

instances from the majority class (non-defective methods) were deleted, causing a balance in the 

datasets. Results in Figure. 9 indicate that the roc_auc values were roughly close in both balanced and 

unbalanced versions of the ensemble learning algorithms. Low precision value in practice means that 

testing resources will be wasted on methods unlikely to have faults; on the other hand, low recall 

value means that a high number of defect-prone modules will go undiscovered, implying low software 

quality. 

 

7. Conclusion 

 

Method-level software defect prediction was an open challenge due to the lack of reliable datasets. 

The ELFF datasets were created specifically to fill in that gap in that area of research. In this paper, 

the SDP model was built on the ELFF datasets using two ensemble learning approaches: ensemble 

learning algorithms (Ada-Boost, Gradient Boost, Bagging, and Random Forest) and balanced 

ensemble learning algorithms (Random under-sampling Boost, Easy Ensemble, Balanced Bagging, 

and Balanced Random Forest). 

1. As for the first contribution (investigating the use of ELFF method level datasets to perform 

software defect prediction using the  ELLF software metrics):  

The first four ensemble algorithms achieved low values for all model metrics, especially 

recall and roc_auc, which were mostly below the random classifier. 

Implementing the balanced versions of the ensemble learning algorithms enhanced recall 

and roc_auc values noticeably but caused the value of precision to severely drop, which is 

imputed to the re-sampling strategy implemented by the balanced versions of the ensemble 

learning algorithms, where instances from the majority (non-defective methods) were 

discarded, causing information related to them to be lost. 

The low precision value means wasted resources on unlikely defective instances, and the 

low recall value implies undiscovered defective methods. 

So if the priority of the SDP model built on the ELFF datasets is to identify defective 

methods rather than save resources, then using Balanced Random Forest algorithm will be 

effective due to its fair recall and roc_auc values, but if saving testing resources is of high 

importance, then using that prediction model may not be practical due to its low precision 

value. 
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Figure.1 : Model evaluation  metrics values of applying Ada-Boost classifier to  ELFF Datasets 
 

 

Figure.2: Model evaluation metrics values of applying Gradient-Boost classifier to ELFF Datasets 
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Figure.3: Model evaluation  metrics values of applying Bagging classifier to ELFF Datasets 

 

Figure.4: Model evaluation  metrics values of applying Random Forest classifier to ELFF 

Datasets 
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Figure.5: Model evaluation metrics values of applying RUS Boost classifier to ELFF Datasets 

 

 

Figure.6: Model evaluation metrics values of applying Balanced Bagging classifier to ELFF Datasets 
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Figure.7: Model evaluation  metrics values of applying Easy Ensemble classifier to ELFF Datasets 

 

 Figure.8: Model evaluation  metrics values of applying Balanced Random Forest classifier to 

ELFF Datasets 
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a) 

 
b). 

c). 

 

Figure. 9: Model evaluation metrics of applying ensemble learning algorithms t to ELFF datasets 

a).Precision , b).Recall , c) Roc_Auc 
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2. As for the second contribution (investigating the impact of eight ensemble learning 

algorithms on the imbalance of the datasets): 

Ensemble learning algorithms (Ada-Boost, Gradient-Boost, Bagging, and Random Forest) 

failed to achieve reliable results for all model metrics, implying that ensemble learning 

algorithms were not effective in handling highly imbalanced datasets.                          .                                                                         

On the other hand, the balanced versions of the algorithms (Random Under-Sampling 

Boost, Easy Ensemble, Balanced Bagging, and Balanced Random Forest) enhanced the 

recall and roc_auc values due to their built-in re-sampling strategies but caused the 

precision value to severely drop. 

 

8. Future work 
 

In this paper, a defect prediction model on the ELFF datasets was investigated using 10 folds of 

cross validation to predict defects in the same project (within project defect prediction). 

Cross-project defect prediction (the prediction of defects in a project based on data from other 

projects) is an important field of research in the area of SDP. 

Hence, one of the future plans is to evaluate cross-project defect prediction (CPDP) on the ELFF 

datasets using ensemble learning techniques, which means instead of performing training and 

testing on the same project data, the prediction model based on one dataset will be tested on another 

project dataset. As there are in the ELFF dataset 69 projects of different versions, the eldest project 

version can be used as a training set, with the newer versions as testing set. 

 

9.  Availability of data and materials 

Artifacts for this paper can be downloaded at : 

https://github.com/challengerofsmile/Elff.git . 

ELFF datasets can be downloaded at : 

https://github.com/tjshippey/ESEM2016 
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