
IJICIS, Vol.23, No.2, 28-49

DOI: 10.21608/ijicis.2023.189934.1251

*Corresponding Author: Asmaa M Ibrahim

Software Engineering Department, Faculty of Computer and Information, Egyptian E-learning University, Assuit , Egypt

Email address: amahmoudibrahim@cis.eelu.edu.eg

International Journal of Intelligent

Computing and Information Sciences

SOFTWARE DEFECT PREDICTION AT METHOD LEVEL USING ENSEMBLE

LEARNING TECHNIQUES

Asmaa M Ibrahim*

Department of Software Engineering,

Faculty of Computers and Information,

Egyptian E-learning University,

Assuit , Egypt

amahmoudibrahim@cis.eelu.edu.eg

Hicham Abdelsalam

Department of Computer Science,

Faculty of Computers and Information

Technology, Egyptian E-learning

University,

Cairo, Egypt

habdelsalam@cis.eelu.edu.eg

Islam A.T.F Taj-Eddin

Department of Information Technology,

Faculty of Computers and Information ,

Assuit University,

Assuit, Egypt

itajeddin@aun.edu.eg

Received 2023-01-26; Revised 2023-05-26; Accepted 2023-05-31

Abstract: Creating error-free software artifacts is essential to increase software quality and potential

re-usability. However, testing software artifacts to find defects and fix them is time consuming and

costly, thus predicting the most error-prone software components can optimize the testing process by

focusing testing resources on those components to save time and money. Much software defect

prediction research has focused on higher granularity, e.g., file and package levels, and fewer have

focused on the method level. In this paper, software defect prediction will be performed on highly

imbalanced method-level datasets extracted from 23 open source Java projects. Eight ensemble

learning algorithms will be applied to the datasets: Ada-Boost, Bagging, Gradient boost, Random

Forest, Random Under sampling Boost, Easy Ensemble, Balanced Bagging and Balanced Random

Forest. The results showed that the Balanced Random Forest classifier achieved the best results

regarding recall and roc_auc values.

Keywords: Method-level software defects prediction, Ensemble Learning, Balanced Ensemble

Learning, Imbalanced dataset, ELFF datasets.

1. Introduction

The testing process is very crucial in the Software Development Life Cycle (SDLC), however, it

consumes a significant amount of resources (roughly 40% of the overall development project costs)

[1] consequently much research focused on improving the testing process to achieve the best resource

https://ijicis.journals.ekb.eg/

mailto:habdelsalam@cis.eelu.edu.eg

DEVELOPING A METHOD FOR CLASSIFYING ELECTRO-OCULOGRAPHY (EOG) SIGNALS USING DEEP

LEARNING 29

utilization. Machine learning techniques were used intensively in the field of software testing by

predicting defective software components or classifying software components into defective e.g.

containing one or more defects or non-defective e.g. defect-free, pursuing this approach, the limited

testing resources can be dedicated to the software components predicted to be defective. The

classification technique depends on software features or attributes to divide the inputs to the

classification process into two classes: defective or nondefective. Those software metrics or attributes

might be extracted from the code itself, such as the number of lines of code (NOLC), or from the

process by which the software was created, such as the number of developers engaged in creating

software.

Many studies focused on predicting software defects at the file or class level, where a file may contain

thousands of lines of code and a class may contain tens of methods, implying that more effort is

required to locate the defective classes or methods, and consequently predicting defects at the method

level can be more efficient and resource-saving [2]. Nonetheless, fewer studies focused on the

method-level defect prediction; Hall et al [3] found that from 2000 to 2012, only 12% of defect

prediction models were performed at the method, function or procedure level. Luka et al.[4] tried to

predict software defects at the method level, and they concluded that software defect prediction at the

method level is still an open challenge. The reason why most of the research done in the area of

software defect prediction focused on a class or a file level is the lack of reliable software defect

datasets at the method level; to address this problem, Thomas Shippey et al.[5] provided the Finding

Faults Using Ensemble Learners (ELFF) datasets containing software defect information related to

the method level, which are used in this paper. Datasets consist of negative and positive samples e.g.

non-fraudulent versus fraudulent transactions, non-diabetic versus diabetic person or non-defective

software components vs. defective ones. The datasets are called balanced if they have a relatively

equal number of both samples [6]; however, this is not the case in the real world problems where the

positive class instances, which are usually the ones of interest, are much less represented than the

negative class instances, causing the prediction model to ignore the less represented class. Many

techniques have been used to overcome the imbalance of the datasets [7]; Resampling is one of the

most commonly used techniques to handle this problem [8][9][10]. Resampling technique can be done

either by under-sampling the majority class or over-sampling the minority class, so both classes will

have relatively the same number of instances. Ensemble learning, also used to handle the imbalance

of the datasets, refers to a group (or ensemble) of base learners or models who work together to

improve the final prediction. Due to the significant variation or bias, a single model, also known as a

base or weak learner, may not perform effectively on its own; when weak learners are combined, they

can produce a strong learner, as their combined bias and variance are reduced, resulting in improved

model performance. Bagging and Boosting are common types of ensemble learning methods.

Bagging, also known as Bootstrap aggregating, is an ensemble learning strategy that depends on

selecting a random sample of data from a training set with replacement meaning that the individual

data points can be chosen multiple times, then weak learner(s) are trained individually after multiple

data samples are collected. Depending on the type of task, regression, or classification, the average

or majority of those predictions yield a more accurate estimate. Boosting on the other hand, is an

ensemble learning strategy for minimizing training errors by combining a group of weak learners into

a strong learner, a random sample of data is chosen, fitted with a model and then trained progressively

30 Asmaa M Ibrahim et al.

and each model attempts to compensate for the shortcomings of its predecessor, each iteration

combines the weak rules from each classifier to generate a single, strong prediction rule, interested

readers can find more details about ensemble learning techniques here [11].

In this paper, the gap created by the lack of software defect prediction at the method level is tried to

be filled by conducting software defect prediction using the ELFF method level datasets, which

contain 63 datasets created from 23 open source Java projects selected with restricted conditions,

where each dataset contains 33 source code metrics.

2. Related work

In this section, related literature to software defect prediction at the method level, software defect

prediction using ensemble learning techniques, and related work to address the problem of

imbalanced datasets will be listed.

2.1.Related work to the software defect prediction at method level

Giger et al.[12] applied three approaches to conduct software defect prediction: using code metrics

only, using change metrics only, and using a combination of them. They used precision, recall, and

Area Under the Curve (Roc_AUC) to evaluate the prediction model in their work, and they achieved

a recall of 85% and a precision of 95% by combining metrics and a random forest classifier. They

also discovered that there is no significant difference between classification algorithms. Luca et al.[4]

tried to evaluate the results in [12] by replicating the same methodology on different systems and

time-spans; they found that the approach on [12] can be generalized with the same results, and then

proposed a change to the methodology to overcome the limitations of the Giger et al. [12] approach.

To overcome those limitations, Luke et al.[4] re-evaluated the performance of [12] method using data

from subsequent releases, i.e., release-by-release validation, and applied the same metrics and the

same machine learning algorithms and feature selection approaches. When compared to the random

classifier, they discovered that the results dropped dramatically.

Hata et al.[2] also compared bug prediction at the method level, file level, and package level regarding

effort-based evaluation using module histories using: first, code-related metrics; second, process

metrics; and third; organizational metrics issues. They found that in 20% of the code, the number of

bugs found at the method level exceeded those found at the file and package levels and concluded

that method level prediction is more effective than package level and file level prediction when

considering efforts.

Rainer Niedermayr et al.[13] tried the Inverse Defect Prediction (IDP) method; instead of predicting

the most error-prone methods, they tried to predict the less likely error-prone methods or methods

that are too trivial to contain bugs, and they used source code metrics to identify low- fault-risk

methods.To identify a low-fault-risk method, they used the Association Rule and to overcome the

imbalance of the dataset, they used the synthetic minority oversampling technique (SMOTE)

technique. Their study showed that IDP can successfully identify methods that are not fault-prone; on

DEVELOPING A METHOD FOR CLASSIFYING ELECTRO-OCULOGRAPHY (EOG) SIGNALS USING DEEP

LEARNING 31

average, 31.7% of the methods (14.8% of the SLOC) matched by the strict classifier contain only

6.0% of all faults.

2.2.Related work to the software defect prediction using ensemble learning techniques

Sammar Mustafa et al.[14] performed the defect prediction at the class level with several voting

techniques using weighted majority voting (WM), randomized weighted majority voting (RWM),

cascading weighted majority voting (CWM), and cascading randomized weighted majority voting

(CRWM). They used three types of metrics: static code metrics, change metrics, and a combination

of both. The datasets used were extracted from four Java open source projects with a highly

imbalanced distribution of instances. The change code metrics provided the highest results regarding

model evaluation metrics, with an f- measure of 98.6%, an accuracy of 74.9% and an auc of 68.5%.

FYucalar et al.[15] tried to empirically study ten ensemble predictors compared to baseline predictor

performance; they conducted their study on 15 NASA projects using the Weka workbench and

evaluated the prediction model in terms of f-measure and area under the receiver operating

characteristic curve (AUC). They concluded that: first, ensemble algorithms can achieve good results,

second, increasing the number of base predictors in ensemble algorithms leads to better results, and

third, the combination of ensemble algorithms reduces the false alarm rate.

Sweta Mehta & K. Sridhar Patnaik [16] applied several machine learning techniques, including

ensemble learning algorithms such as: XGBoost, Stacking, Ada-Boost, and Gradient-Boost, to

perform the software defect prediction on datasets from NASA and the PROMISE repository, to

address the high dimensionality of the datasets, they used several feature selection techniques, while

the problem of high imbalance in the dataset was addressed using the SMOTE oversampling

approach.They concluded that the Stacking ensemble learning method and XGBoost provided the

best results among the techniques used in their research.

Yakub Kayode Saheed et al.[17] implemented seven ensemble machine learning models for SDP: the

Cat Boost, Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting

(XgBoost),Boosted Cat Boost, Bagged Logistic Regression, Boosted LGBM,and Boosted XgBoost

in addition to separate base model using Logistic Regression. They used in their research three public

datasets from the PROMISE repository and concluded that the proposed ensemble method’s

performance was significantly better and more competitive than the individual base classifier Logistic

Regression model for all defect datasets used in the research.

Abdullateef O. Balogun et al.[18] proposed a combination of synthetic minority oversampling

technique (SMOTE) and ensemble classifiers (Bagging and Boosting) in addition to using Decision

Tree (DT) and Bayesian Network (BN) algorithms as base classifiers for predicting software defects.

Six datasets from the NASA repository were used with unbalance ratios ranging from 2% to 7% and

with different numbers of features and modules. First SMOTE oversampling was applied to the

datasets, then the four classifiers with 10-fold cross validation were applied to the oversampled

datasets; their results showed that the use of SMOTE and homogeneous ensemble not only solved the

32 Asmaa M Ibrahim et al.

issue of class imbalance but also enhanced the base classifier prediction performance. It is worth

mentioning that the way of re-sampling followed by [18] was criticized by [19], as the later paper

considered that a common flaw usually happens in such situations where the entire dataset is

over/under sampled before applying cross validation, this approach may lead to overly optimistic

results, while the right way to over/under sample the data according to [19] is within the cross

validation folds.

Inas Abuqaddom and Amjad Hudaib [20] Used SMOTE oversampling technique along with Cost

Sensitive Learning (CSL) and the Ada-Boost algorithm to handle imbalanced dataset issues. They

applied their approach to four datasets from the PROMISE repository with imbalance ratios ranging

from 9.84% to 19.35%. They compared their approach to three other approaches: Decision Tree (DT),

Ada-Boost with DT as its base classifier, and SMOTE-Ada-Boost. Their findings showed that their

proposed approach improved the prediction of software defects.

Aljamaan and A.Alazba [21] investigated seven ensemble learning classifiers in defect prediction,

which were: Random Forest, Extra Trees, Ada Boost, Gradient Boosting, Heist Gradient Boosting,

XGBoost, and Cat-Boost. They performed their approach on 11 publicly available MDP NASA

software defect datasets, and their results showed that Random Forest and Extra Trees classifiers

performed the best while Ada-Boost performed the worst.

Saifan et al. [22] conducted two ensemble learning algorithms (Bagging and Boosting) and two single

classifiers (KNN and SVM) along with four feature selection techniques, which were Principal

Component Analysis (PCA), Pearson’s correlation, Greedy Stepwise Forward Selection, and

Information Gain (IG). They applied their approach to five datasets obtained from the PROMISE

software repository and concluded that ensemble methods can improve a model’s performance

without any feature selection techniques.

Mohammad Zubair Khan [23] presented a Hybrid Ensemble Learning Technique (HELT) which was

performed on eight datasets from the PROMISE repository with an imbalance ratio ranging from

2.1% to 35.2%. According to their study, the HELT technique included the features selection

approach, and two algorithms (Classifier-Attribute-Eval and Ranker algorithms) from the Weka tool,

then K-Mean clustering was applied to the datasets, and SMOTE oversampling was used to balance

the data. Ada-Boost and Bagging ensemble techniques were used with Naive Bayes, Support Vector

Machine and Random Forest classifiers were used as base classifiers for both ensemble techniques.

Their results showed that Ada-Boost with SVM and Bagging SVM performed the best in terms of

accuracy, recall, precision, and auc. The HELT approach also showed a higher accuracy rate

compared to other machine learning techniques.

2.3.Related work to address the problem of imbalanced datasets

Most machine learning models performed in SDP face the problem of imbalanced datasets where

defective instances are much less common than non-defective ones, which makes the prediction

model biased towards the class with the highest number of instances, giving misleading results. Many

DEVELOPING A METHOD FOR CLASSIFYING ELECTRO-OCULOGRAPHY (EOG) SIGNALS USING DEEP

LEARNING 33

techniques were used to address the problem of imbalanced datasets, such as cost-sensitive classifiers,

ensemble learning approaches, and re-sampling techniques.

Malhotra and J.Jain [24] conducted an investigation into software defect prediction at the class level

using three datasets from three open-source Java projects from the PROMISE library. To overcome

the problem of imbalanced datasets in their research, they used cost-sensitive classifiers. Their

research adopted the J48 (decision tree) algorithm and compared it with three ensembles: Boosting-

Based ABM1, Bagging-Based Bag, and Random Forest-based RSS. A subset of features was chosen

using the Correlation Feature Selection (CFS) method. They concluded that using a cost-sensitive

classifier performed better with machine learning algorithms than without it. The re-sampling

technique, on the other hand, is a popular approach used in handling imbalanced datasets, KE Benin

et al.[25] tried to investigate six re-sampling techniques: synthetic minority over sampling technique

(SMOTE), borderline SMOTE ,safe-level SMOTE, Oversampling using adaptive synthetic

(ADASYN), random over sampling (ROS), and random under sampling (RUS). The six approaches

were conducted on 40 releases of 20 open source projects with an imbalance ratio between the ranges

of 3.8 to 17.46%, and two types of metrics were used (process metrics and static code metrics). They

used several machine learning algorithms and concluded that: first, resampling methods significantly

improved the performance of the prediction model in terms of all model metrics except for auc (Area

Under the Roc Curve); second the performance of resampling method depends on the imbalance ratio

of the dataset (ratio of defects and clean instances); third, random under-sampling and border-line

SMOTE provided more stable results across several performance measures and prediction models.

Abdullah Alsaeedi et al.[26] presented a study to compare several machine learning algorithms

(Bagging, Support Vector Machines , Decision Tree , and Random Forest) using 10 NASA datasets;

a SMOTE re-sampling technique was used to handle the imbalanced datasets. To evaluate the

performance of different classifiers, accuracy, f-measure, and roc_auc metrics were used. Their

outcomes showed that Random Forest, Ada-Boost with Random Forest, and Bagging with Decision

Tree generally performed well, but they did not reach a decisive result about the best performing

algorithm as some classifiers performed well on some datasets and poorly on others.

Shatnawi and Ziad [27] presented a guided oversampling technique in which a module is duplicated

in the dataset depending on the number of defects, and then the resulting dataset is oversampled. Not

only the guided oversampling approach was used, but also SMOTE oversampling was used with

different values of minority class duplication (100%, 200%, 300%, 400% and 500%). The prediction

models are first applied to the original dataset without resampling and then to the processed dataset

after resampling. They found that the re-sampled datasets with all re-sampling techniques

outperformed the datasets with no re-sampling in terms of all prediction model metrics. They also

found that their proposed duplicated and re-sampled technique provided better results with and

without re-sampling and they also found that for the five classifiers used, their technique had better

performance for duplicated without re-sampling datasets, meaning that their proposed technique

outperformed the well-known SMOTE .

Thanh Tung Khuat and My Hanh Le.[28] used the random under-sampling technique to address the

34 Asmaa M Ibrahim et al.

problem of imbalanced datasets and used several machine learning algorithms through three steps:

first, a sampling step in which majority class samples in the original dataset are split into bins using

random under sampling, second, a training step in which each base classifier is trained on the balanced

datasets that resulted from the previous step, and third, final classifier is constructed using the results

of the base classifier and the majority voting rule. They conducted their study on seven datasets from

the PROMISE repository of software defect databases, with a ratio of defective instances ranging

from 11.36% to 33.59%. Using f-measure, they found that their ensemble model performed better on

re-sampled datasets than non-resampled datasets and outperformed base classifiers on both resampled

and non-resampled datasets.

Hamad Alsawalqah et al.[29] used a hybrid technique of SMOTE oversampling and ensemble

classifiers to perform software defect prediction on four public benchmark datasets from the

PROMISE repository, with a ratio of defective modules ranging from 9.83% to 19.35%. In the first

stage of their study, they applied to the datasets three commonly used classifiers: Naive Bayes (NB),

Multilayer Perceptron (MLP), and C4.5 decision trees, with the 10-fold cross validation technique.

The second stage was to apply three ensemble classifiers (Random Forest, Bagging, and Ada- Boost)

to enhance the prediction results from the previous step using Decision Tree as a base classifier that

performed the best in the previous stage, and the final step was to combine the ensemble technique

with the best results (Ada-Boost) with SMOTE. The amount of oversampling using SMOTE ranged

from 20% to 200%. Their results showed that their proposed approach had better quality results than

the other classification algorithms.

Haotian Yang and Min Li [30] presented a hybrid approach of SMOTE-Tomek re-sampling and the

XGBoost algorithm and applied their technique to 10 NASA datasets and compared their approach

with different re-sampling techniques and classification algorithms. They concluded that their

approach performed better than the other approaches in terms of auc and f-measure.

3. Research gaps and contributions

Bowes et al.[31] used the ELFF tool provided by the ELFF paper authors to predict faults at an

industrial level by plugging the tool into the IntelliJ IDE, which enables developers to perform regular

defect prediction on their Java code. ELFF datasets were also used in a regression machine learning

model where the number of defects in the newer software version was predicted based on bug-related

information obtained from the older version [32]. ELFF class-level datasets were also used in [33] to

investigate time and defect velocity in relation to the defect density of a class using the defect density

correlation technique.

F. Yang et al.[34] proposed a software defect prediction at the level of method call sequences, while

Thomas Shippey et al.[35] proposed a semi-supervised model named DPCAG for the defect

prediction task. From the previous literature review, it is found that ELFF method-level datasets were

not used in predicting within-project software defects based on the ELFF datasets bug related metrics,

nor were they used to investigate the impact of ensemble learning techniques on the severe imbalance

in the dataset. The contribution of this paper will be:

DEVELOPING A METHOD FOR CLASSIFYING ELECTRO-OCULOGRAPHY (EOG) SIGNALS USING DEEP

LEARNING 35

1. Investigating the use of ELFF method-level datasets to perform software defect prediction

using ELFF software metrics.

2. Investigating the impact of four ensemble learning algorithms (Ada-Boost, Gradient-Boost,

Bagging, and Random Forest) and their balanced versions (Random Under-Sampling Boost,

Easy Ensemble, Balanced Bagging, and Balanced Random Forest) on the imbalance of the

datasets and consequently on the software defect prediction model built on those datasets.

4. Dataset and features

To provide a reliable dataset at the method level, Thomas Shippey et al. [5] provided the Finding

Faults Using Ensemble Learners (ELFF) datasets derived from 23 open source Java projects selected

on multiple criteria by mining the Boa Source-Forge september 2013 open source dataset. The criteria

used to select the 23 projects were:

1. To be written in Java.

2. To be an SVN (subversion version control system) project.

3. Have a Sourceforge defect tracker.

4. Have a Sourceforge tracking system.

5. Have at least 100 fixed defects.

Choosing Java and SVN projects because the research team’s tool was designed to extract defects

from projects with those criteria, while selecting projects with a certain number of defects was

intended to achieve a certain degree of balance in the datasets, as a high degree of unbalancing will

mislead the prediction model and cause bias towards the class with a larger number of instances. The

software metrics in the ELFF datasets are source code metrics for 69 versions of the 23 projects, and

they were extracted per release, unlike the approach followed by Giger et al.[12], where software

metrics related to defects were extracted after a specified time span, which is considered a limitation

by Luca et al.[4].

Each method in the ELFF datasets has 33 metrics (see Table 1). ELFF datasets are also highly

imbalanced, with a much lower percentage of defective methods than non-defective ones. Table 3.

lists the percentage of defective instances in the ELFF datasets. In any classification process, the first

three metrics (package, class, and method) will be omitted because it is trivial that they will not affect

the outcome of the classification process, besides not overwhelming the prediction model with

unnecessary data. The rest of the metrics are the well-known source code metrics, such as Halstead’s

metrics, which are famous static code metrics; interested readers can find more information in [36].

The datasets also contain two additional metrics: Flag and Sequence. Flag determines the type of

method: (setter, getter, abstract...), Sequence on the other hand describes the listing of the method e.g.

identifier ,block.... The classification process will be applied to 63 datasets out of 69, as six datasets

in the ELFF datasets have no defective methods. Compared to previous work that performed defect

prediction at the method level, the ELFF datasets has the largest number of features regarding source

code metrics, while on the other hand, Giger et al[12] and Luka et al[4] used other types of metrics

in the dataset they worked on, Table 2. summarizes the distinction between three papers that

investigated the software defect prediction at the method level.

36 Asmaa M Ibrahim et al.

Table 1: ELFF dataset software metrics.

Metric (Software Feature) Definition

Package Method’s package

Class Method’s Class

Method Method Name

CC Cyclomatic complexity It is a quantitative measure of the number of linearl independent paths

through a Program is code

NOCL The number of comment Lines

NOS The number of statements

HLTH Halstead length of method

HVOC Halstead vocabulary of method

HEFF Halstead effort, the mental effort required to develop or maintain a program

HBUG Halstead prediction of a number of bugs

CREF The number of classes referenced.

XMET The number of external methods.

LMET Local methods called using the method

NLOC The number of lines of code

NOC The number of comments

NOA The number of arguments

MOD The number of modifiers

HDIF Halstead difficulty to implement a method

VDEC The number of variables declared

EXCT The number of exceptions thrown using the method

EXCR The number of exceptions referenced using the method

CAST The number of class casts

TDN Total depth of nesting

HVOL Halstead volume

NAND The total number of operands

VREF The number of variables referenced

NOPR The total number of operators

MDN Method: Maximum depth of nesting

NEXP The number of expressions

LOOP The number of loops (for,while)

FLAG Type of method Getter, setter, abstract...

SEQUENCE Listing of method , e.g (method identifier block)

DEFECTIVE True for buggy method, False for non-buggy method

DEVELOPING A METHOD FOR CLASSIFYING ELECTRO-OCULOGRAPHY (EOG) SIGNALS USING DEEP

LEARNING 37

 Table 2: A comparison of this paper’s proposal to previous works related to defect prediction at Method Level

Comparisons/Paper Method-Level Bug

Prediction

Re-evaluating Method-

Level Bug Prediction.

Software Defect Prediction at

Method Level

Using Ensemble Learning

Techniques

Reference Giger et al [12] Luka Et al [4] This paper

Year 2012 2018 2023

Classifiers Bayesian Network

Support Vector Machine

Random Forest

J48(Decision tree)

Bayesian Network

Support Vector Machine

Random Forest

J48(Decision tree)

Bagging,Ada-Boost, Gradient

Boost, Random Forest, Random

Under Sampling Boost,Easy

Ensemble, Balanced Bagging and

Balanced Random Forest

Number Of Java

projects

21 21 23

Date of extracting

defects related data

At the end of a time frame. By release and at the end of a

time frame

By release

Type of metrics Source code, Change

metrics

Source code ,Change

metrics

Source code metrics

Number of source

code metrics

9 9 29

Evaluating metrics precision, recall, roc_auc precision, recall,

f-measure, roc_auc

precision, recall, roc_auc

5. Methodology

5.1. Selecting the proper machine learning algorithm to build the prediction model on

the ELFF datasets

Ensemble learning algorithms were used in the literature to perform software defect prediction in

subsection 2.2 as well as to handle the problem of imbalanced datasets as shown in subsection 2.3.In

this paper, ensemble learning algorithms with their corresponding balanced versions in the Scikit-

Learn Python library are used. Table 4 lists a short description of the eight algorithms.1

5.2. Selecting the model metrics

To evaluate the performance of the model, a few terms needed to be reviewed:

1. True positive (TP): positive instances classified as positive (defective methods classified as

defective).

2. False positive (FP): negative instances classified as positive (non-defective methods classified as

defective).

3. False negative (FN): positive instances classified as negative (defective methods classified as non-

defective).

4. True negative (TN): negative instances classified as negative. (non-defective methods classified as

non-defective).

1 https://scikit-learn.org/stable/modules/Ensemble.html

https://scikit-learn.org/stable/modules/Ensemble.html

38 Asmaa M Ibrahim et al.

The following model metrics are used to evaluate model performance:

1. Precision is the fraction of true positives retrieved among the total retrieved instances

Precision = true positive / (true positive + false positive).

2. Recall is the fraction of true positives that were retrieved over the total number of true

positives in the dataset. Recall = true positive / (true positive + false negative).

3. ROC Area is a ROC curve (receiver operating characteristic curve) that is a graph showing

the performance of a classification model at all classification thresholds. This curve plots

two parameters: the true positive rate and the false positive rate.

Table 3: Percentage of the defective methods for each dataset in the ELFF datasets

Dataset Name Defective% Dataset Name Defective%

metricsFlagsDefects-autoplot2012 1.241 metricsFlagsDefects-jmol9 5.312

metricsFlagsDefects-cdk1.1 1.906 metricsFlagsDefects-jmol10 2.009

metricsFlagsDefects-cmusphinx3.6 0.321 metricsFlagsDefects-jmri2.2 1.0718

metricsFlagsDefects-cmusphinx3.7 0.214 metricsFlagsDefects-jmri2.4 7.238

metricsFlagsDefects-controltier3 0.872 metricsFlagsDefects-jmri2.6 1.194

metricsFlagsDefects-drjava2008 6.940 metricsFlagsDefects-jmri2 0.930

metricsFlagsDefects-drjava2009- 4.544 metricsFlagsDefects-jppf4.1 1.393

metricsFlagsDefects-drjava2010 2.145 metricsFlagsDefects-jppf4.2 1.394

metricsFlagsDefects-eclemma2.1 3.477 metricsFlagsDefects-jppf4 2.727

metricsFlagsDefects-eclemma2 1.0262 metricsFlagsDefects-jppf5.1 0.599

metricsFlagsDefects-ejdt3 1.220 metricsFlagsDefects-jppf5 3.0394

metricsFlagsDefects-genoviz5.4 9.690 metricsFlagsDefects-jtds23072009 1.440

metricsFlagsDefects-genoviz6.1 10.296 metricsFlagsDefects-jump1.5 0.980

metricsFlagsDefects-genoviz6.2 3.689 metricsFlagsDefects-jump1.6 0.732

metricsFlagsDefects-genoviz6.3 2.595 metricsFlagsDefects-jump1.7 0.647

metricsFlagsDefects-genoviz6 10.175 metricsFlagsDefects-jump1.8 0.713

metricsFlagsDefects-htmlunit2008 9.0987 metricsFlagsDefects-jump1.9 1.845

metricsFlagsDefects-htmlunit2009 1.324 metricsFlagsDefects-omegat3.1 0.882

metricsFlagsDefects-htmlunit2010 3.349 metricsFlagsDefects-omegat3.5 1.645

metricsFlagsDefects-jedit5.2 0.178 metricsFlagsDefects-omegat3.6 1.536

metricsFlagsDefects-jikesrvm2 1.1100 metricsFlagsDefects-runawfe3.6 0.015

metricsFlagsDefects-jikesrvm3.1 0.437 metricsFlagsDefects-runawfe4.1 2.942

metricsFlagsDefects-jikesrvm3 2.917 metricsFlagsDefects-saros1.0.6 3.787

metricsFlagsDefects-jitterbit1.1 2.0486 metricsFlagsDefects-tango2008 0.560

metricsFlagsDefects-jitterbit1.2 0.296 metricsFlagsDefects-unicore1.2 4.211

metricsFlagsDefects-jmol2 2.928 metricsFlagsDefects-unicore1.3 2.166

metricsFlagsDefects-jmol3 2.593 metricsFlagsDefects-unicore1.4 7.878

metricsFlagsDefects-jmol4 5.9384 metricsFlagsDefects-unicore1.5 1.728

metricsFlagsDefects-jmol5 5.772 metricsFlagsDefects-unicore1.6 5.0453

metricsFlagsDefects-jmol6 13.143 metricsFlagsDefects-xaware5.1 0.592

metricsFlagsDefects-jmol7 10.227 metricsFlagsDefects-xaware5 1.621

metricsFlagsDefects-jmol8 4.592

5.3. Data preparation

Processing data before applying a prediction model is a vital step in machine learning techniques, if

DEVELOPING A METHOD FOR CLASSIFYING ELECTRO-OCULOGRAPHY (EOG) SIGNALS USING DEEP

LEARNING 39

data is poorly processed, misleading results will be obtained no matter how good the prediction model

is.

In this paper proposal, three steps will be applied to prepare data before applying the prediction model:

dropping id-like metrics, metrics, replacing missing values and normalization:

1. Dropping id-like features (package, class and method) (see Table 1) as they will not

affect the classification process and to save processing resources as well.

2. Replacing missing values: real-world datasets may not contain all values for all

instances due to problems in recording data or obtaining certain values. The Pandas

Python library provides several approaches to fill in missing values. In this paper,

backward filling will be used, which works by filling missing values with the next set

of data points .2

3. Normalization: Features (software metrics) in the ELFF dataset differ in range and

distribution, causing features with high values to have a higher impact on the

classification results. To unify the range of all numeric data from 0 to 1, normalizing is

used.

Table 4: A short description of the algorithms used in this paper

Algorithm Classification: Strategy

Ada-Boost A meta-estimator that starts by fitting a classifier to the original dataset, then fits multiple

copies of the classifier to the same dataset, but adjusts the weights of poorly classified

instances so that succeeding classifiers focus

more on difficult cases.

Bagging An ensemble meta-estimators that fit base classifiers to random subsets of the original

dataset and then aggregate their individual predictions (either by voting or averaging) to

generate a final prediction.

Gradient Boosting GB permits the optimization of any differentiable loss function and constructs an additive

model in a forward stage-wise manner. Each stage involves fitting n classes regression

trees on the loss function’s negative gradient,

such as a binary or multi class log loss.

Random Forest A meta estimator that fits a number of decision tree classifiers on various sub-samples of

the dataset and uses averaging to improve the predictive accuracy and control

over-fitting.

Random Under-Sampling Boost Ada-Boost’s learning technique incorporates random undersampling where each iteration

of the Boosting

method, the problem of class balancing is mitigated by randomly undersampling the

sample.

Easy Ensemble The classifier is a collection of Ada-Boost learners that were trained on a variety of

balanced bootstrap examples. Random

Under-Sampling is used to achieve the balancing.

Balanced Bagging An extra balance Bagging classifier. where Bagging is implemented with an additional

step to balance the training set at the appropriate moment using a provided

sampler.

Balanced Random Forest A balanced random forest randomly under-samples each

bootstrap sample to balance it.

2 https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.fillna.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.fillna.html

40 Asmaa M Ibrahim et al.

5.4. Cross validation technique

Each algorithm will be applied with ten folds of cross-validation, where the data is first divided into

k segments or folds of equal size; following that, k iterations of training and validation are carried out,

with each iteration holding out a different fold of the data for validation while utilizing the remaining

(k-1) folds for learning.

6. Results and discussion

Figure.1 illustrates the model metrics resulting from applying the Ada-Boost classifier on ELFF

method-level datasets, which are (except for roc_auc) way below random classifier values. The zero

value appears a lot for all model metrics, which is the worst value for a model metric. Recalling from

Subsection 5.2 that a low precision value implies a high false positive rate and a low recall value

implies a high false negative rate, the Ada-Boost classifier identifies non-defective methods as

defective and identifies defective methods as non-defective with high rates.

In Figure. 2, the model metrics resulting from applying the Gradient Boost classifier are shown.

Despite the fact that the results are slightly better than the previous algorithm, they are still way below

the random classifier.

Bagging classifier application to ELFF method-level datasets results appear in Figure. 3, where the

model metrics values are getting better than two previous algorithms (except for roc_auc), but still

not fair results.

On the other hand, Figure. 4 shows results for the Random Forest algorithm, where precision values

got better than previous classifiers while recall did not get noticeably better.

Moving to the second approach in this research, which is using the balanced versions of the ensemble

learning algorithms in the Sci-kit-learn Python library, Figure. 5 shows the model metrics values of

Random Under-Sampling Boost, where recall values noticeably increased and exceeded precision

values, meaning that false negative values dropped (the number of defective methods classified as

non-defective), indicating an enhancement in the model's ability to identify defective methods as

defective.

Results of applying the Balanced-Bagging classifier are shown in Figure .6, The low values of

precision achieved by this classifier indicate a high false positive value. On the other hand, recall

values increased above the random classifier. Also, the model's ability to distinguish between two

classes (defective and non-defective instances) increased as the values of roc_auc increased.

The third algorithm in the balanced ensemble learning algorithms used in this paper is the Easy

Ensemble classifier, whose results are shown in Figure. 7, where fair values for recall and roc_auc

appeared but with very low values for precision.

DEVELOPING A METHOD FOR CLASSIFYING ELECTRO-OCULOGRAPHY (EOG) SIGNALS USING DEEP

LEARNING 41

Finally, Figure .8 shows the values of applying a Balanced Random Forest classifier on ELFF

datasets, where the best results were achieved among all algorithms used in this paper in terms of

recall and roc_auc, which means an increase in the model ability to identify defective instances as

defective and an increase in the model ability to distinguish between defective and non-defective

methods.

Figure. 9 summarizes the performance of the eight ensemble learning algorithms used in this paper.It

shows that the non-balanced versions of the ensemble learning algorithms achieved the worst

performance regarding recall values, but on the other hand, they achieved better precision results than

the balanced ensemble learning versions. It also shows that precision values in the four balanced

ensemble learning algorithms dropped dramatically while recall values increased,which might be

caused by re-sampling techniques implemented by the balanced ensemble learning algorithms where

instances from the majority class (non-defective methods) were deleted, causing a balance in the

datasets. Results in Figure. 9 indicate that the roc_auc values were roughly close in both balanced and

unbalanced versions of the ensemble learning algorithms. Low precision value in practice means that

testing resources will be wasted on methods unlikely to have faults; on the other hand, low recall

value means that a high number of defect-prone modules will go undiscovered, implying low software

quality.

7. Conclusion

Method-level software defect prediction was an open challenge due to the lack of reliable datasets.

The ELFF datasets were created specifically to fill in that gap in that area of research. In this paper,

the SDP model was built on the ELFF datasets using two ensemble learning approaches: ensemble

learning algorithms (Ada-Boost, Gradient Boost, Bagging, and Random Forest) and balanced

ensemble learning algorithms (Random under-sampling Boost, Easy Ensemble, Balanced Bagging,

and Balanced Random Forest).

1. As for the first contribution (investigating the use of ELFF method level datasets to perform

software defect prediction using the ELLF software metrics):

The first four ensemble algorithms achieved low values for all model metrics, especially

recall and roc_auc, which were mostly below the random classifier.

Implementing the balanced versions of the ensemble learning algorithms enhanced recall

and roc_auc values noticeably but caused the value of precision to severely drop, which is

imputed to the re-sampling strategy implemented by the balanced versions of the ensemble

learning algorithms, where instances from the majority (non-defective methods) were

discarded, causing information related to them to be lost.

The low precision value means wasted resources on unlikely defective instances, and the

low recall value implies undiscovered defective methods.

So if the priority of the SDP model built on the ELFF datasets is to identify defective

methods rather than save resources, then using Balanced Random Forest algorithm will be

effective due to its fair recall and roc_auc values, but if saving testing resources is of high

importance, then using that prediction model may not be practical due to its low precision

value.

42 Asmaa M Ibrahim et al.

Figure.1 : Model evaluation metrics values of applying Ada-Boost classifier to ELFF Datasets

Figure.2: Model evaluation metrics values of applying Gradient-Boost classifier to ELFF Datasets

DEVELOPING A METHOD FOR CLASSIFYING ELECTRO-OCULOGRAPHY (EOG) SIGNALS USING DEEP

LEARNING 43

Figure.3: Model evaluation metrics values of applying Bagging classifier to ELFF Datasets

Figure.4: Model evaluation metrics values of applying Random Forest classifier to ELFF

Datasets

44 Asmaa M Ibrahim et al.

Figure.5: Model evaluation metrics values of applying RUS Boost classifier to ELFF Datasets

Figure.6: Model evaluation metrics values of applying Balanced Bagging classifier to ELFF Datasets

DEVELOPING A METHOD FOR CLASSIFYING ELECTRO-OCULOGRAPHY (EOG) SIGNALS USING DEEP

LEARNING 45

Figure.7: Model evaluation metrics values of applying Easy Ensemble classifier to ELFF Datasets

 Figure.8: Model evaluation metrics values of applying Balanced Random Forest classifier to

ELFF Datasets

46 Asmaa M Ibrahim et al.

a)

b).

c).

Figure. 9: Model evaluation metrics of applying ensemble learning algorithms t to ELFF datasets

a).Precision , b).Recall , c) Roc_Auc

DEVELOPING A METHOD FOR CLASSIFYING ELECTRO-OCULOGRAPHY (EOG) SIGNALS USING DEEP

LEARNING 47

2. As for the second contribution (investigating the impact of eight ensemble learning

algorithms on the imbalance of the datasets):

Ensemble learning algorithms (Ada-Boost, Gradient-Boost, Bagging, and Random Forest)

failed to achieve reliable results for all model metrics, implying that ensemble learning

algorithms were not effective in handling highly imbalanced datasets. .

On the other hand, the balanced versions of the algorithms (Random Under-Sampling

Boost, Easy Ensemble, Balanced Bagging, and Balanced Random Forest) enhanced the

recall and roc_auc values due to their built-in re-sampling strategies but caused the

precision value to severely drop.

8. Future work

In this paper, a defect prediction model on the ELFF datasets was investigated using 10 folds of

cross validation to predict defects in the same project (within project defect prediction).

Cross-project defect prediction (the prediction of defects in a project based on data from other

projects) is an important field of research in the area of SDP.

Hence, one of the future plans is to evaluate cross-project defect prediction (CPDP) on the ELFF

datasets using ensemble learning techniques, which means instead of performing training and

testing on the same project data, the prediction model based on one dataset will be tested on another

project dataset. As there are in the ELFF dataset 69 projects of different versions, the eldest project

version can be used as a training set, with the newer versions as testing set.

9. Availability of data and materials

Artifacts for this paper can be downloaded at :

https://github.com/challengerofsmile/Elff.git .

ELFF datasets can be downloaded at :

https://github.com/tjshippey/ESEM2016

References

[1] Pataricza, A., G¨onczy, L., Brancati, F., Moreira, F., Silva, N., Esposito, R., Bondavalli, A.,

Esper, A.: Cost estimation for independent systems verification and validation. Certifications of

Critical Systems-The CECRIS Experience. River Publishers, 117 (2017) .

[2] Hata, H., Mizuno, O., Kikuno, T.: Bug prediction based on fine-grained module histories. In:

2012 34th International Conference on Software Engineering (ICSE), (2012), pp. 200–210 , IEEE

[3] Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature review on

fault prediction performance in software engineering. IEEE Transactions on Software Engineering

38(6), (2011), 1276–1304

[4] Pascarella, L., Palomba, F., Bacchelli, A.: Re-evaluating method-level bug prediction. In: 2018

IEEE 25th International Conference on Software Analysis, Evolution and Reengineering

(SANER), (2018) , pp. 592–601 , IEEE

[5] Shippey, T., Hall, T., Counsell, S., Bowes, D.: So you need more method level datasets for your

https://github.com/challengerofsmile/Elff.git
https://github.com/challengerofsmile/Elff.git
https://github.com/tjshippey/ESEM2016
https://github.com/tjshippey/ESEM2016

48 Asmaa M Ibrahim et al.

software defect prediction? voil`a! In: Proceedings of the 10th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement, (2016) , pp. 1–6

[6] Provost, F.: Machine learning from imbalanced data sets 101. In: Proceedings of the

AAAI’2000 Workshop on Imbalanced Data Sets, vol. 68, (2000) , pp. 1–3 . AAAI Press

[7] Spelmen, V.S., Porkodi, R.: A review on handling imbalanced data. In: 2018 International

Conference on Current Trends Towards Converging Technologies (ICCTCT), (2018) , pp. 1–11 .

IEEE

[8] Odejide, B.J., Bajeh, A.O., Balogun, A.O., Alanamu, Z.O., Adewole, K.S., Akintola, A.G.,

Salihu, S.A., Usman-Hamza, F.E., Mojeed, H.A.: An empirical study on data sampling methods in

addressing class imbalance problem in software defect prediction. In: Computer Science On- line

Conference, (2022), pp. 594–610 . Springer

[9] Bennin, K.E., Tahir, A., MacDonell, S.G., B¨orstler, J.: An empirical study on the effectiveness

of data resampling approaches for cross-project software defect prediction. IET Software 16(2),

(2022) , 185–199

[10] Iqbal, A., Aftab, S., Matloob, F.: Performance analysis of resampling techniques on class

imbalance issue in software defect prediction. Int. J. Inf. Technol. Comput. Sci 11(11), (2019) , 44–

53

[11] Polikar, R.: Ensemble based systems in decision making. IEEE Circuits and systems magazine

6(3), (2006) , 21–45

[12] Giger, E., D’Ambros, M., Pinzger, M., Gall, H.C.: Method-level bug prediction. In:

Proceedings of the 2012 ACM-IEEE International Symposium on Empirical Software Engineering

and Measurement, (2012) , pp. 171–180 . IEEE

[13] Niedermayr, R., R¨ohm, T., Wagner, S.: Too trivial to test? an inverse view on defect

prediction to identify methods with low fault risk. PeerJ Computer Science 5, (2019) , 187

[14] Moustafa, S., ElNainay, M.Y., El Makky, N., Abougabal, M.S.: Software bug prediction using

weighted majority voting techniques. Alexandria engineering journal 57(4), (2018) , 2763–2774 .

[15] Yucalar, F., Ozcift, A., Borandag, E., Kilinc, D.: Multiple-classifiers in software quality

engineering: Combining predictors to improve software fault prediction ability. Engineering

Science and Technology, an International Journal 23(4),(2020), 938–950 .

[16] Mehta, S., Patnaik, K.S.: Improved prediction of software defects using ensemble machine

learning techniques. Neural Computing and Applications 33(16), (2021) , 10551–10562

[17] Saheed, Y.K., Longe, O., Baba, U.A., Rakshit, S., Vajjhala, N.R.: An ensemble learning

approach for software defect prediction in developing quality software product. In: International

Conference on Advances in Computing and Data Sciences, (2021) , pp. 317–326 . Springer

[18] Balogun, A.O., Lafenwa-Balogun, F.B., Mojeed, H.A., Adeyemo, V.E., Akande, O.N.,

Akintola, A.G., Bajeh, A.O., Usman-Hamza, F.E.: Smotebased homogeneous ensemble methods

for software defect prediction. In: International Conference on Computational Science and Its

Applications, (2020), pp. 615–631 . Springer

[19] Santos, M.S., Soares, J.P., Abreu, P.H., Araujo, H., Santos, J.: Crossvalidation for imbalanced

datasets: avoiding overoptimistic and overfitting approaches [research frontier]. ieee

ComputatioNal iNtelligeNCe magaziNe 13(4), (2018) , 59–76

[20] Abuqaddom, I., Hudaib, A.: Cost-sensitive learner on hybrid smoteensemble approach to

predict software defects. In: Proceedings of the Computational Methods in Systems and Software,

DEVELOPING A METHOD FOR CLASSIFYING ELECTRO-OCULOGRAPHY (EOG) SIGNALS USING DEEP

LEARNING 49

(2018) , pp. 12–21 . Springer

[21] Aljamaan, H., Alazba, A.: Software defect prediction using tree-based ensembles. In:

Proceedings of the 16th ACM International Conference on Predictive Models and Data Analytics

in Software Engineering, (2020) , pp. 1–10

[22] Saifan, A.A., Abu-wardih, L.: Software defect prediction based on feature subset selection and

ensemble classification. ECTI Transactions on Computer and Information Technology (ECTI-

CIT) 14(2), (2020) , 213–228

[23] Khan, M.Z.: Hybrid ensemble learning technique for software defect prediction. International

Journal of Modern Education & Computer Science (2020), (1)12

[24] Malhotra, R., Jain, J.: Predicting defects in object-oriented software using cost-sensitive

classification. In: IOP Conference Series: Materials Science and Engineering, vol. 1022, (2021),

p. 012112 . IOP Publishing

[25] Bennin, K.E., Keung, J.W., Monden, A.: On the relative value of data resampling approaches

for software defect prediction. Empirical Software Engineering 24(2), (2019), 602–636

[26] Alsaeedi, A., Khan, M.Z.: Software defect prediction using supervised machine learning and

ensemble techniques: a comparative study. Journal of Software Engineering and Applications

12(5), (2019), 85–100

[27] Shatnawi, R., Al-Sharif, Z.: A guided oversampling technique to improve the prediction of

software fault-proneness for imbalanced data. International Journal of Knowledge Engineering and

Data Mining 2(2-3)),2012), 200-214

[28] Khuat, T.T., Le, M.H.: Ensemble learning for software fault prediction problem with

imbalanced data. International Journal of Electrical and Computer Engineering 9(4),(2019), 3241

[29] Alsawalqah, H., Faris, H., Aljarah, I., Alnemer, L., Alhindawi, N.: Hybrid smote-ensemble

approach for software defect prediction. In: Computer Science On-line Conference,(2017), pp.

355–366 . Springer

[30] Yang, H., Li, M.: Software defect prediction based on smote-tomek and xgBoost. In:

International Conference on Bio-Inspired Computing: Theories and Applications,(2021), pp. 12–

31 . Springer

[31] Bowes, D., Counsell, S., Hall, T., Petric, J., Shippey, T.: Getting defect prediction into

industrial practice: the elff tool. In: 2017 IEEE International Symposium on Software Reliability

Engineering Workshops (ISSREW),(2017), pp. 44–47 . IEEE

[32] Felix, E.A., Lee, S.P.: Predicting the number of defects in a new software version. PloS one

15(3), 0229131 (2020).

[33] Felix, E.A., Lee, S.P.: Impact of defect velocity at class level. In: 2017 International

Conference on Robotics and Automation Sciences (ICRAS), (2017), pp. 182–188 . IEEE

[34] Yang, F., Huang, Y., Xu, H., Xiao, P., Zheng, W.: Fine-grained software defect prediction

based on the method-call sequence. Computational Intelligence and Neuroscience 2022 (2022).

[35] Zheng, X., Li, Y.-F., Gao, H., Hua, Y., Qi, G.: Towards balanced defect prediction with better

information propagation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.

35, (2021), pp. 759–767.

[36] Al Qutaish, R.E., Abran, A.: An analysis of the design and definitions of halstead’s metrics.

In: 15th Int. Workshop on Software Measurement (IWSM’2005). Shaker-Verlag, (2005), pp. 337–

352

