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Abstract: Recently with the high implementation of numerous Internet of Things (IoT) based systems, it 

becomes a crucial need to have an effective data prediction approach for IoT data analysis that copes 

with sustainable smart city services. Nevertheless, IoT data add many data perspectives to consider, 

which complicate the data prediction process. This poses the urge for advanced data fusion methods 

that would preserve IoT data while ensuring data prediction accuracy, reliability, and robustness. 

Although different data prediction approaches have been presented for IoT applications, but 

maintaining IoT data characteristics is still a challenge.  This paper presents our proposed approach 

the domain-independent Data Fusion for Data Prediction (DFDP) that consists of: (1) data fusion, 

which maintains IoT data massive size, faults, spatiotemporality, and freshness by employing a data 

input-data output fusion approach, and (2) data prediction, which utilizes the K-Nearest Neighbor data 

prediction technique on the fused data. DFDP is validated using IoT data from different smart cities 

datasets. The experiments examine the effective performance of DFDP that reaches 91.8% accuracy 

level. 
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An metropolitan area that uses digital technology to handle its community services more effectively is 

referred as a "smart city" [1]. The goal of smart cities is to create a more comfortable and sustainable 

environment that enhances the standard of living for residents based on data prediction analysis and 

Internet of Things (IoT) [2]. Smart tools like sensors and actuators have been widely increased because 

of IoT [3]. Sensors are used to collect massive amounts of heterogeneous data from different IoT-based 

applications such as environmental monitoring, healthcare, smart transportation systems, IoT-based web 

mining and social media, IoT data streaming, and industrial plant monitoring [4]. These devices gather 

data from the different IoT-based applications and transmit them to platforms for processing and 

analysis. The problem arises from the IoT-based data generated from the connected devices with diverse 

digital technologies which are massive in size, highly heterogeneous, real-time, dynamic, spatial, 

temporal and volatile [5]. In this sense, the different types of sources, and the enormous amounts of 

inaccurate data collected at unusual high rates, make predicting these data inaccurate, unreliable and  

necessitating much processing time [6]. Thence, new data prediction processes have been prompted 

using different data prediction techniques to consider all these challenges [7]. Data prediction 

techniques such as: Naive Bayes (NB), Decision Trees (DT), K-Nearest Neighbor (KNN), regression 

techniques, and Neural Networks (NN) have become widely considered in IoT-based data prediction 

approaches [8]. Despite of the enormous data prediction processes have been presented for different IoT 

domains, but still they have some limitations to cope all new features of IoT data [9]. Hence, data fusion 

has become a popular method for maintaining and enhancing data for further data analysis [5,10-15]. In 

this context, data fusion helps reducing data amount, maintaining data faults, and extracting useful data 

[16]. Data fusion could be achieved in IoT applications at three scales: (1) low-scale, which uses the 

acquired sensors data directly in the fusion process; (2) middle-scale, where certain extracted features 

from the heterogeneous IoT data are used in the fusion process; and (3) high-scale, which decides the 

most optimum decision from multiple decisions [17]. Accordingly, several combinations of the data 

fusion levels can be utilized for data prediction. [5]. However, our scope focused on the low data fusion 

scale which immediately fuses data from IoT data sources. In this context, the maintained IoT fused 

data can be used for data prediction, avoiding IoT data processing challenges. Hence, this paper 

proposes the domain-independent Data Fusion for Data Prediction (DFDP) approach that maintains 

many features of IoT data based on data input-data output fusion approach. DFDP approach aims to 

improve IoT data prediction accuracy, reliability, and processing time.  

 

This paper contributes the following added values. It: 

1. Investigates the challenges of different data prediction applications at various IoT domains. 

2. Presents the Data Fusion for Data Prediction (DFDP) approach as a generic IoT-based data 

prediction approach for any smart city application. 

3. Ensures DFDP data prediction processing time robustness by reducing IoT data size. 

4. Ensures DFDP data prediction reliability by maintaining IoT data faults. 

5. Ensures DFDP data prediction accuracy by considering IoT data spatiotemporality and 

freshness. 

6. Examines DFDP using datasets of different fields of smart cities. 

 

The organization of this paper is: Section 2 overviews multiple approaches used to predict data in 

different IoT applications. Section 3 presents the suggested DFDP approach, showing the clear 

clarification of its tiers. Section 4 debates DFDP experiments. Finally, the conclusion section concludes 

DFDP findings and presents our upcoming work.  

 

2. Related Works 
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Numerous approaches for predicting data have been developed to the IoT-based systems. In this section, 

we investigated the employed data prediction techniques and emphasized the approaches' gaps.  The 

approach proposed in [18] was a data prediction approach for predicting human activities on a daily 

basis. Authors utilized users' mobile telecommunications and human body sensors' data to deduce 

human behavior patterns and predict his activities. The proposed approach was based on DT technique 

reaching a 75% accuracy level. However, the approach missed considering IoT massive size, IoT data 

temporality and freshness while analysis. In [19], authors proposed an approach for predicting and 

recommending video content based on IoT user profiles. The video metadata content was used to create 

the associated user profile from the continuously tracked user communications with the system. It was 

based on Artificial Neural Networks (ANN) using item content and user ratings data. Although it 

reached a 90% accuracy level, it ignored videos meta-data spatiality, freshness, and validity. The 

approach in [20] was a context aware prediction system for IoT-based social media activities. It infers 

the contextual preferences by reading context, user profile, and social media activities using NB. 

Analyzing all the acquired IoT data without data reduction and ignoring data freshness and temporality 

were the main drawbacks. For IoT-based web mining, the authors suggested a method for 

recommending web surfers preferred pages in [21]. The clustered Markov model was utilized in the 

suggested method for making predictions, which aimed to cluster web documents according to web 

services before predicting web pages using Markov model to reach 90% accuracy level. Yet, ignoring 

web pages meta-data freshness and surfing data temporality were the main approach's issues. In smart 

transportation IoT domain, authors in [22] presented an IoT-based approach for accident rates 

prediction using ANN model. Different numbers were used by the model such as vehicles, accidents, 

and population. Although the experimental results illustrated that 85% accuracy level was reached, 

neither considering data freshness nor data reduction were the main missing. Table 1 summarizes the 

mostly used approaches for predicting data in IoT applications according to the applied IoT domain, 

used technique, the limitations of the approach, and the applied evaluation metric. 

  
Table 1 Evaluation Summary of the main IoT-based data prediction approaches 

 

Ref IoT domain Technique Limitations Evaluation metric 

[18] Smart homes DT 
Considering IoT data temporality, massive size, 

and freshness 

75% Accuracy 

level 

[19] IoT data streaming ANN 
Considering IoT data spatiality, freshness, and 

validity 

90% Accuracy 

level 

[20] 
IoT-based social 

media 
NB 

Maintaining IoT data massive size, freshness, and 

temporality 
- 

[21] 
IoT-based web 

mining 
Markov model Maintaining IoT data freshness and temporality 

90% Accuracy 

level 

[22] Smart transportation ANN Considering IoT data massive size and freshness 
85% Accuracy 

level 

 

3. Data Fusion for Data Prediction (DFDP) Approach Demonstration 

 

A complete clarification of the Data Fusion for Data Prediction (DFDP) approach is demonstrated 

herein. Figure. 1 presents the DFDP architecture, that utilizes two tiers: Data Manager and Data Fusion 

Manager. DFDP is designed to process the structured IoT data on any processing model. Another two 

tiers: (1) Domain-based analysis and (2) Data presentation are not considered as DFDP modules, 

because they are dependent on the IoT application and specific to the business use case. A detailed 
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clarification of the main tiers of DFDP are clarified in the next subsections. 

 

3.1. Data Manager 

 

This module starts the DFDP processing scenario, which reads the raw structured IoT data to directly 

handle multiple IoT data characteristics before the data fusion and prediction stages through the 

following modules.  

• Data Freshness Handler: Data freshness depends on the IoT application domain. For instance, 

traffic-related data are considered fresh for minutes, while in smart energy IoT domain, data are 

considered fresh for months [23]. Hence, this STDF module manages data freshness through 

testing their generation time 𝐺𝑇 if exceeds a specific freshness time duration 𝐹𝑇 dependent on 

the IoT domain [5]. The data rows 𝑋𝐷 of data source 𝑗 with a generation time 𝐺𝑇𝑗  exceeds the 

freshness time duration 𝐹𝑇  are ignored as shown in Eq. (1): 

 

𝑋𝐷𝑗 = 𝐺𝑇𝐽 ≥ 𝐹𝑇       (1) 

 

      where 𝑋𝐷𝑗  are the discarded data rows of data source 𝑗, 𝐺𝑇𝑗 is the data rows generation time at 

data source 𝑗, and 𝐹𝑇 is the specific freshness time duration. 

 

 
 

Figure. 1: The system architecture of the proposed Data Fusion for Data Prediction (DFDP) approach on a domain based IoT 

application 

 

• Imprecise Data Handler: IoT data are  faulty and noisy because of the unreliable data sources 

[24]. Thus, prior to data prediction, it is crucial to maintain IoT data missing and faults [25]. 

Therefore, this sub-module checks each data parameter to replace faulty one with the parameter 
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mean value 𝑀𝑛𝑖. For instance, for 𝑋 numerical parameter, DFDP generates 

(𝑀𝑛1, 𝑀𝑛2, … , 𝑀𝑛𝑖 , … . 𝑀𝑛𝑋)  as shown in Eq. (2) [26]: 

𝑀𝑛𝑖 =
1

𝑛
∑ 𝑍𝑗𝑖                            (2) 

𝑗=𝑛

𝑗=1

 

      where 𝑀𝑛𝑖 represents the mean of parameter 𝑖, 𝑛 represents the count of data rows of parameter 

𝑖, and 𝑍𝑗𝑖 represents the parameter’s value 𝑖 at the data row 𝑗. Additionally, to process non-

numeric input for additional mathematical computations at the data prediction step, several 

encoding techniques are utilized to change the data format into a numeric format.  [27]. 

• Data Reducer: The enormous IoT data volume which negatively affects the data prediction 

results are managed herein [28]. Thus, this STDF sub-module reduces data volume by applying 

two phases of cluster sampling technique. Where, data are clustered based on the same data 

source (𝑆𝐼𝐷) then instead of choosing all elements from one cluster, it select random sample of 

all clusters [28, 29]. Thus, it horizontally reduces the count of IoT data rows per each source [5]. 

 

3.2. Data Fusion Manager 

 

Handling the temporal and spatial IoT data characteristics is the responsibility of this tier. It performs 

the data fusion procedure on the final data rows from the Data Manager tier through the following 

modules. 

• Spatial Data Handler: IoT data spatiality is preserved through grouping IoT data rows 

according to their location ID (𝐿𝐼𝐷) by utilizing K-means algorithm [5]. It receives  the data 

rows after reduction and clustering based on their 𝑆𝐼𝐷, then it groups all data rows of the same 

𝑆𝐼𝐷 based on their 𝐿𝐼𝐷 (centroids) by performing one stage of  K-means technique and the 

constant centroids [30, 31, 32].  

• Temporal Data Handler: IoT data temporality is preserved by aggregating each 𝑆𝐼𝐷 data rows 

per 𝐿𝐼𝐷 by utilizing Tiny AGgregation (TAG) data aggregation algorithm[5]. Hence, using the 

resultant spatial corelated grouped data rows, it aggregates all 𝑆𝐼𝐷 data rows to select the most 

fresh data row per 𝐿𝐼𝐷 which has the minimum 𝐺𝑇 [33]. 

 

3.3. Data Prediction Engine 

 

This tier performs the data prediction process after maintaining IoT data freshness, quality, size and 

spatiotemporality, which ensures the effective data prediction by using fresh, cleansed, reduced and 

spatially and temporally correlated data. Data prediction is performed using K Nearest Neighbor (KNN) 

technique through the following sub-modules. 

• Data Prediction Configuration Manager: This sub-module prepares IoT data to enable their 

processing using KNN by utilizing encoding methods to convert the data format from non-

numeric to a numerical [34]. For example in nominal parameters, label encoding is used and 

each label is mapped to an integer value [35]. Also, it standardizes parameter values in case of 

parameter values are measured in different units [36]. For example, if height parameter is 

measured in centimeters and meters, it standardizes all values to the same unit. Furthermore, 
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basic properties are determined in this module to enable the KNN, such as the 𝐾 value [37].  

• IoT Data Predictor: This sub-module predicts the unknown parameter's value of specific data 

row using KNN technique which use the same parameter's values of the nearest neighbor data 

rows [38]. DFDP constructs a minimal dataset for each 𝑆𝐼𝐷 using the resultant location-based 

aggregated data rows with 𝑀 parameters. Then, it determines the distance between the current 

data row 𝑅 and each neighbor data row 𝑁𝑅𝑖 using the Euclidean distance (𝐸𝑑) equation as 

shown in Eq.(3) [39]. Neighbors data rows are ascendingly sorted based on their distance, and 

the 𝐾 neighbor data rows with minimum distances are selected to predict the unknown 

parameter value 𝑃𝑅𝑗 via the average equation as shown in Eq.(4) [40] in case of continuous 

parameter values. 

𝑬𝒅 (𝑹, 𝑵𝑹𝒊) = √∑(𝑹𝒋 − 𝑵𝑹𝒊𝒋)
𝟐

𝒋=𝑴

𝒋=𝟏

        (𝟑) 

     where 𝑹𝒋 is the parameter 𝒋 value in current data row 𝑹, 𝑵𝑹𝒊𝒋 is the parameter 𝒋  value in 

neighbor data row 𝒊, and 𝑴 represents the parameters count in all data rows. 

𝑷𝑹𝒋 =  ∑ 𝑵𝑹𝒊𝒋

𝒊=𝑲

𝒊=𝟏

𝑲⁄                                    (𝟒) 

      where 𝑃𝑅𝑗 is the parameter 𝑗  predicted value in current data row 𝑅, 𝑁𝑅𝑖𝑗 is the parameter 𝑗 

value in neighbor data row 𝑖, and 𝐾 represents the neighbors data rows count. Otherwise, for the 

nominal parameter values, DFDP uses majority voting instead of averaging that computes 

proportion 𝑃 for each value in the 𝐾 data rows as demostrated in Eq.(5) [11]: 

𝑃 =  𝐵 𝐾                                          (5)⁄  

      where 𝐵 represents the value's occurrences count in the 𝐾 data rows and 𝐾 represents the 

neighbor data rows count. DFDP considers the predicted value is the one which has the 

maximum 𝑃 value. 

 

4. Experimentation 

 

This section demonstrates the experiments criteria, evaluation metrics and the used datasets while 

evaluating DFDP modules. The next subsections demonstrate a thorough insight of the experimentation 

process and the utilized datasets. 

 

4.1. Experimental process 

 

The experiments performed to ensure DFDP efficiency are demonstrated herein. Using 2.70GHz core 

i7, 8GB RAM, and 1T hard disk for hardware specifications to carry out the experiments for DFDP. 

The experiments were designed to assess how IoT data prediction reliability, robustness, and accuracy 

are impacted by IoT data characteristics. DFDP processing begins with checking the freshness, pre-

processing, and reducing the collected IoT data rows in the Data Manager using two different freshness 

time durations: 10 seconds 24 hours for S1 and S2 respectively and 200 and 500 sample sizes for 

dataset1 and dataset2. IoT data are then grouped by the Spatial Data Handler based on location IDs and 
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the Temporal Data Handler aggregates the data rows in each group to the freshest data row. Then, the 

IoT Data Predictor predicts the unknown data using the aggregated IoT data rows. DFDP performance 

is evaluated via tracking IoT data freshness, reliability, size, spatiality, temporality, processing time and 

data prediction accuracy. Many evaluation standards are considered to evaluate DFDP such as the 

standard deviation (𝑆𝐷) for IoT data reliability as shown in Eq. (6) [41] and the Root Mean Square 

Error (𝑅𝑀𝑆𝐸) for IoT data prediction accuracy as shown in Eq. (7) [42]: 

SDi =  √∑(Xi −  Mni)2 𝑀⁄                        (6) 

where 𝑆𝐷𝑖 is the parameter 𝑖 standard deviation,  𝑀𝑛𝑖 is the parameter 𝑖 mean value, 𝑋𝑖 is the parameter 

𝑖 data row value and 𝑀 represents the data rows count in the dataset. 

𝑅𝑀𝑆𝐸 =  √
1

𝑀  
 ∑ (𝑥𝑖 − 𝑦𝑖)2𝑁

𝑖=1                   (7) 

where 𝑀 represents the data rows count in the dataset, 𝑥𝑖 represents the original data, and 𝑦𝑖 represents 

the corresponding predicted data to 𝑥𝑖.  

 

4.2. Datasets 

 

Two datasets of various IoT applications are utilized to assess the DFDP performance. DFDP minimizes 

the amount of IoT data regardless of dataset volume. For instance, an IoT traffic dataset (S1), represents 

data rows related to the smart transportation field [43]. S1 is 843KB, represented by seven parameters: 

ID, location ID, owner, state, type, date-time, entry-dist. All nominal parameters, such as: owner, state 

and type are encoded in the Data Prediction Configuration Manager. Second, an IoT water consuming 

dataset (S2), represents data rows related to smart urban planning field [43]. S2’s size is 960 KB, 

represented by 11 parameters: hydrant-number-model, owner, ID, node-number, type, dist_to_valve, 

branch_valve_model, state, project-number, location ID, and date-time. All nominal parameters like 

owner, state and type are encoded in the Data Prediction Configuration Manager.   

 

5. Discussion 

 

This section presents our experiments that assessed DFDP effectiveness to predict IoT data as follows: 

(1) Managing data freshness using different user-defined freshness time durations, (2) Ensuring data 

quality by managing IoT data errors on the different datasets, (3) Reducing the huge data on different 

datasets, (4) Preserving data spatiality by monitoring data rows location IDs on different datasets, (5) 

Managing data temporality by monitoring the aggregated data rows at different datasets, (6) Monitoring 

the consumed processing time before and after reducing data to ensure the robustness of data prediction, 

and (7) Ensuring data prediction accuracy at the different datasets. The carried-out experiments with 

their results are discussed in the next subsections. 

 

5.1. Data Freshness Evaluation 

 

Managing IoT data freshness is evaluated in this experiment by checking the fresh data rows count 

having an accepted 𝐺𝑇 on different time duration. Thus, we investigated the fresh data rows count of S2 

at 1, 2 and 3 days durations. As presented in Figure. 2, 10,020, 16,320 and 20,170 fresh data rows were 

passed at the three durations respectively, which demonstrates that the fresh data rows count increases 

by increasing the freshness time duration. 
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5.2. Handling IoT Data Quality 

 

Handling IoT data reliability is evaluated in this experiment by checking the 𝑆𝐷 for the generated mean 

value in S1 and S2. Figure. 3 shows the 𝑆𝐷 of entry-dist and dist_to_valve (6.8, 4.3) for S1 and S2 

respectively, reaching maximum error level at 6.8, proving 93.2% quality level for the used data rows. 

 

 
Figure. 2 Evaluating IoT data freshness at different freshness time durations 

 

 
Figure. 3 SD values of parameters means at S1 and S2 

 

 

 
Figure. 4 Evaluating IoT data reduction at S1 and S2 
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5.3. Handling IoT Data Size 

 

IoT data reduction is evaluated in this experiment by checking the sampled data rows count at S1 and 

S2. Thus, the sampled data rows count is tested using the sample size of data rows:  200 and 500 for S1 

and S2 respectively. Figure. 4 shows the data rows count in both datasets before and after sampling. 

There were 4,400 and 10,300 data rows per day for S1 and S2 before sampling, while 2,000 and 6,000 

data rows per day were found after sampling for S1 and S2. This proves that DFDP efficiently reaches 

an average 50% of data reduction using 50%–60% of the population as sample size. 

 

5.4. Handling IoT Data Spatiality 

 

Preserving IoT data spatiality is evaluated in this experiment through checking location IDs number in 

different datasets. Thus, the number of LID per each owner (SID) is tracked in each dataset. As shown in 

Figure. 5, 10 and 12 𝑆𝐼𝐷 are found for S1 and S2 respectively, and average 3 and 6 𝐿𝐼𝐷 are found per 

each 𝑆𝐼𝐷 for S1 and S2. This experiment proves that the larger the size of dataset, the more location IDs 

used to cluster the data rows.  

 

5.5. Handling IoT Data Temporality 

 

Preserving the IoT data temporality is evaluated in this experiment by checking  𝐿𝐼𝐷 and aggregated 

data rows numbers on a time-based specific 𝑆𝐼𝐷 to examine the aggregation effectiveness. Each 𝑆𝐼𝐷 

has an average 200 data rows (after sampling) are generated from different number of 𝐿𝐼𝐷. Thus, we 

investigated the results for 𝑆𝐼𝐷1 at S1 over three seconds of simulation. Table 2 shows that the data 

rows are disseminated from 3 & 2, and 3 𝐿𝐼𝐷𝑠 at the first, second, and third seconds of execution. 

Hence, the gathered data rows of  𝑆𝐼𝐷1 in S1 are 3, 3 and 2 data rows respectively. 

 

 
Figure. 5 The number of 𝑺𝑰𝑫 and 𝑳𝑰𝑫 at S1 and S2 

 

5.6. The Continuous IoT Data Processing Evaluation 

 

This test tracks the consumed processing time of the Data Prediction Engine before and after utilizing 

both sampling and aggregation data reduction techniques in Data Manager and Data Fusion Manager 
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using both datasets preserving the continuous processing of IoT data. As shown in Figure. 6, 34 and 12 

seconds were consumed for S1 before and after using the reduction techniques. In addition, 56 and 25 

seconds were consumed for S2 before and after using the reduction techniques. This demonstrates that 

DFDP preserves the consumed processing time by an average of 53%. 

 
Table 2 Three seconds of simulation of 𝑺𝑰𝑫𝟏 in S1 at the Temporal Data Handler 

 

Seconds Number of 𝐿𝐼𝐷 
Number of data rows per 𝐿𝐼𝐷 

𝐿𝐼𝐷1              𝐿𝐼𝐷2               𝐿𝐼𝐷3 
Number of aggregated data rows per 𝑆𝐼𝐷1 

1 2 98 72 30 3 

2 3 78 65 57 3 

3 3 - 134 66 2 

 

 

5.7. Evaluating IoT Data Prediction Accuracy 

 

The accuracy of DFDP IoT data prediction is evaluated in this experiment after maintaining IoT data 

features using DFDP modules. We randomly selected the predicted data rows to check the 𝑹𝑴𝑺𝑬 of in 

(𝑳𝑰𝑫𝟏, 𝑳𝑰𝑫𝟐) of 𝑺𝑰𝑫𝟏 at S1 and S2 using 𝑲=3. In S1, the 𝑹𝑴𝑺𝑬 of the predicted data rows for the 

attributes: type, status, owner, and entry-dist, is computed based on the entry-dist attribute only, since 

the rest of the attributes are nominal with P instead of the mean. In S2, the 𝑹𝑴𝑺𝑬 of the predicted data 

rows for the attributes: node-number, type, hydrant-number-model, dist_to_valve, branch_valve_model, 

owner, state, project-number, is computed based on the dist_to_valve attribute only, since the rest of the 

attributes are nominal with P instead of the mean. In S1, the 𝑹𝑴𝑺𝑬 of the predicted data row at both 

location IDs were: 8.2 and 7.6 for 𝑳𝑰𝑫𝟏 and 𝑳𝑰𝑫𝟐 respectively. As for S2, the 𝑹𝑴𝑺𝑬 of the predicted 

data row at both location IDs were: 5.4 and 6.2 for 𝑳𝑰𝑫𝟏 and 𝑳𝑰𝑫𝟐 respectively, which implies the 

accurate prediction results for larger datasets.  Figure. 7 shows that DFDP reaches the maximum 𝑹𝑴𝑺𝑬 

value at 8.2, which ensures the accurate IoT data prediction with 91.8% accuracy level. 

 

 
Figure. 6 The consumed processing time before and after DFDP data reduction at S1 and S2 
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Figure. 7 DFDP data prediction accuracy at S1 and S2 

 
 

6. Conclusion 

 

Recently, data prediction had a significant demand in IoT applications. It faces multiple challenges due 

to IoT data characteristics like size, quality, spatiotemporality, freshness etc. In this study, Data Fusion 

for Data Prediction (DFDP) approach is uniquely prompted as a data prediction approach that maintains 

different IoT data features by utilizing data fusion on three processing stages: (1) Data manager, (2) 

Data fusion manager, and (3) Data prediction engine, irrespective of the IoT domain and coping any 

business functions. Firstly, it processes the acquired IoT data to manage most of the introduced IoT data 

features, like, data freshness, quality, and size. Secondly, it maintains the spatiotemporal IoT data 

characteristics using data aggregation as a main data fusion technique. Finally, the third stage is 

responsible for data prediction, where the KNN is used as the main data prediction technique. The 

experimental results indicate the optimum performance of DFDP in different aspects, as: (1) ensuring 

the totally fresh IoT data, (2) managing IoT data impreciseness by 93.2% accuracy level, (3) achieving 

an average 50% and 53% of data reduction and processing time reduction respectively (4) accurately 

predicts IoT data with 91.8% accuracy rate. Our future work is focusing on examining the DFDP 

approach for multiple types of software testing in large and distributed frameworks, such as the multi-

agent environments [44, 45], IoT-based systems [46-53] and service-oriented systems [54, 55]. We also 

plan to improve the DFDP approach via considering IoT data heterogeneity by supporting different data 

structures. 
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