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Abstract: O-glycosylation is a typical type of protein post-translational modifications (PTMs), which is 

linked to several diseases and has significant roles in many biological processes. Identification of O-

glycosylation sites is important to know the mechanism of the O-glycosylation process. However, the 

identification of PTM sites by laboratory experimental tools is time and money-consuming. Thus, the 

utilization of computational and artificial intelligence is becoming essential to predict O-glycosylation 

sites. In this paper, we proposed a new model to improve O-glycosylation site prediction using a 

transformer-based protein language model and machine learning. The dataset was collected and 

prepared from a recent data source called OGP (O-glycoprotein repository). The TAPE (Tasks Assessing 

Protein Embeddings) protein language model was used to feature extraction from the peptide sequences 

using the embedding strategy. Then, feature selection was implemented using the linear support vector 

machine (SVM) to select informative features. The XGBoost ensemble-based machine learning method 

was utilized for classification and prediction. The proposed model achieved high-performance results 

with 0.7761 accuracy, 0.7391 sensitivity, 0.8130 specificity, 0.8295 AUC, and 0.5537 MCC when 

compared with the traditional machine learning methods. On an independent dataset, the proposed 

method performed better than the latest available methods for predicting O-glycosylation sites.   

 

Keywords: protein language model, machine learning, XGBoost, Bioinformatics, O-glycosylation site 

prediction.  

 

1. Inroduction  

 

1.1. Overview  

 

https://ijicis.journals.ekb.eg/ 
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Post-translational modifications (PTMs) of proteins are the chemical alterations that take place after the 

protein is produced. Protein PTMs are fundamental for the structure, maturation, and functions of 

proteins. Thus, detecting and comprehending PTMs is crucial in cell biology research as well as disease 

prevention and treatment [1]. Glycosylation is a common type of PTMs in which a complex group of 

glycan is enzymatically linked to the amino acids of proteins. Recent studies reported that abnormal 

glycosylation causes various diseases like cancer, diabetes, and immunity diseases [2–4]. 

 

One of the major types of glycosylation is O-glycosylation, in which a glycan is joined to the hydroxyl 

group of a protein's serine (S) or threonine (T) amino acid. Prediction of glycosylation sites aids in 

understanding the biological process of glycosylation as well as helps in the treatment of diseases that are 

associated with it [2,5]. In order to improve O-glycosylation site identification as well as to reduce 

experimental effort and cost, computational intelligence and machine learning techniques have been 

considered for O-glycosylation site prediction. Bioinformatics applications are increasingly centered on 

artificial intelligence, including machine learning and deep learning. 

 

O-glycosylation site prediction has undergone a great deal of research and advancement, but more work 

is still needed in this area due to the importance of this task, performance improvement needed as well as 

the enormous amount of data that is continually being revised. Most of the previous studies for O-

glycosylation site prediction use various traditional feature extraction methods to encode protein or 

peptide sequence information. Sequence-based, structural-based, evolutionary, and multiple sequence 

alignments (MSAs) are some examples of these approach categories. As the peptide sequence is a 

sequence of alphabet characters, we here benefit from the embedding of the deep learning language model 

called Protein language models (PLMs) that exist in the natural language processing (NLP) field. PLMs 

are transformed-based language models derived from state-of-the-art NLP language models like BERT, 

ALBERT, and XLNet that are trained on huge protein sequences [6]. The deep learning transformer in 

PLMs used to capture the contextual information embedded in the amino acids protein sequence. PLMs 

employed the masked language model that has the ability to create context information around each amino 

acid and assess its significance in that context [7,8]. Multiple protein language models have been 

successfully applied for protein sequence embedding and analysis such as ProtBERT, ProtAlbert, 

ProtXLNet [9], ESM [10], and TAPE [11].   

 

1.2. Literature Review 

 

Previously many computational methods have been applied successfully for O-glycosylation site 

prediction using machine learning methods. NetOGlyc tool [12] was presented for predicting the mucin-

type of O-glycosylation sites by neural networks classifier and using amino acid composition, and surface 

accessibility features. Oglyc method [13] was built for O-glycosylation site prediction by support vector 

machine (SVM) method and based on binary profile features and physicochemical properties of protein 

peptides. Caragea et al. constructed EnsembleGly [14] method for the prediction of O-glycosylation sites 

using ensembles of SVM that outperformed other classifiers. CKSAAP_OGlySite tool [15] used SVM 

and “composition of k-spaced amino acid pairs (CKSAAP)” properties for O-glycosylation site 

prediction. GPP tool was proposed by Hamby [16] to identify O-glycosylation sites using pairwise 

sequence patterns of amino acid sequences and the random forest (RF) classifier. GlycoEP predictor [3] 

was developed to identify O-glycosylation sites using multiple classifiers where the SVM model 

outperformed the other models. 
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GlycoMine [17] used the random forest classifier to identify O-glycosylation sites using heterogeneous 

functional and sequence features. O-GlcNAcPRED-II tool [4] was presented for O-glycosylation site 

prediction using the rotation forest ensembled method that divided the extracted features into four 

predictors. They implemented the fuzzy under-sampling method (KPCA-FUS) and K-means principal 

component analysis oversampling approach for creating a balanced dataset. SPRINT-Gly prediction tool 

[18] by deep neural networks on human and mouse datasets and used various feature extraction 

techniques. GlycoMine_PU tool [5] was proposed to predict O-glycosylation using positive unlabeled 

(PU) learning approach. Multiple sequences, functional, and structural-based features were extracted from 

protein sequences. Zhu et al. developed Captor predictor [19] for o-glycosylation site prediction using 

SVM and utilizing multiple sequence-based feature extraction methods on the OGP dataset.  

 

In this study, we propose a new method to improve the O-glycosylation site prediction. Firstly, the latest 

data is collected and preprocessed from the OGP repository. Then, we use the TAPE (Tasks Assessing 

Protein Embeddings) pre-trained protein language model for feature embedding and representation from 

the peptide sequences. After that, machine learning algorithms are used to feature selection, model 

construction, and prediction.  Linear SVM is used for selecting the best extracted features followed by 

the XGBoost ensemble classifier for training and prediction. Finally, cross-validation and independent 

testing are employed to estimate and compare the proposed model based on MCC, accuracy, sensitivity, 

specificity, and AUC performance metrics. The paper contributes to developing a new method for O-

glycosylation site prediction using machine learning and a pre-trained protein language model. All the 

previous studies used sequence, structural, and evolutionary-based features extracted from the protein 

sequences. We here utilize the protein language model for feature embedding instead of the traditional 

methods for feature extraction. The proposed method achieved high-performance results when compared 

with the previous recent studies on the same dataset. The remaining of the paper is organized as follows: 

section 2 describes the materials and methods used in this work including the dataset, protein language 

model, machine learning method, and evaluation measures. Section 3 presents the experimental 

performance results and discussion. The last section presents the conclusions and future work. 

 

2. Materials and Methods 

 

2.1. Overview 

 

The General diagram for the proposed method for O-glycosylation site prediction is illustrated in Figure. 

1. The figure involves four blocks in which each one representing the main step of the proposed method. 

The first step represents collecting and preprocessing the used dataset from the OGP repository. The data 

is split into training and independent datasets. Secondly, the TAPE protein language model is used to 

extract features from the peptide sequences using embedding. After that machine learning techniques are 

utilized for feature selection and classification. Linear SVM is implemented for selecting informatic and 

significant features followed by the XGBoost method for training the proposed model. Finally, cross-

validation and independent testing approaches are employed for evaluating and comparing the proposed 

method based on five performance metrics.  
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Figure 1. Overall flowchart of the proposed method.  

 

2.2. Dataset Collection and Preprocessing 

 

In this work, the dataset is collected from the O-glycoprotein repository (OGP) [20] 

(http://www.oglyp.org/download.php). OGP is a database for O-glycosylation sites that contains 2133 O-

glycoproteins with 9354 verified O-glycosylation sites. We employ only the human O-glycoproteins that 

include 1476 glycoproteins with 7038 verified O-glycosylation sites. After that, the CD-HIT program 

[21] is used to remove redundancy with an identity of over 30%. As result, the used O-glycoproteins are 

reduced to 1173 O-glycoproteins with 4526 verified O-glycosylation sites. O-glycosylation sites may 

occur in any serine (S) or threonine (T) amino acids in the glycoproteins sequence. However, not all these 

sites are considered O-glycosylation sites. We consider the verified O-glycosylation sites acquired from 

OGP as positive sites or O-glycosylation sites. All the other serine (S) or threonine (T) sites are considered 

negative sites or non-O-glycosylation sites. The sliding window approach was used for sample 

construction that divides the sequence into fragments called peptides. Like the Captor study [19] that we 

compare with, window size 31 is used to construct the O-glycosylation sites in which 15 amino acids 

downstream and 15 amino acids upstream around the serine (S) or threonine (T) amino acid. Thus, each 

sample has a length of 31 amino acids. If the length of the sample is less than 31, we extend the sample 

with the non-known amino acid “X”.  

 

The redundancy samples with a similarity of over 30% are also removed using the CD-HIT program to 

avoid classification overfitting. The number of positive samples resulting after redundancy removal is 

2816 positive samples. To improve prediction performance, 2816 negative samples are selected for 

constructing a balanced O-glycosylation training dataset. To fairly compare with the recent previous 

studies, we use the same independent dataset that was used in the Captor study for evaluation and 

comparison. The independent dataset does not include in the training set and holds 230 positive vs 230 

negative samples.  Figure 2. shows the window size for each sample with a length of 31 in which the 

serine (S) or threonine (T) amino acid is at center with 15 residues from its left and 15 residues from its 

right. The figure also illustrates the two-sample logos [22] of the frequencies of amino acids around 

positive O-glycosylation sites compared to negative sites using all sample sequences. The figure shows 

that the Proline (P) amino acids are enriched around the O-glycosylation sites, especially in the sites (-1, 

http://www.oglyp.org/download.php
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+3, +1, +2, +4, -3, -2). The Alanine (A) amino acids are also enriched around O-glycosylation sites in 

positions (from -3 to +2). The threonine (T) amino acid is also enriched in position (+1).  It is also shown 

that Leucine (L) is the most depleted amino acid near the O-glycosylation site. 

 

 
 

Figure 2. Two-sample logo for the frequencies of amino acids around the O-glycosylation sites. 

 

2.3. Feature Representation 

 

Protein sequences are fragmented into multiple to represent our peptide samples. Twenty symbol letters 

represent the amino acids of each sample including {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, 

W, Y}. In addition, the letter ‘X’ is used to represent unknown amino acids like {U, Z, O, B}. These 

samples should be encoded to numerical format for training machine learning models. this numerical 

format represents the key properties and characteristics of the samples. Embedding features extracted 

from the TAPE [11] protein language model (PLM) from peptide sequences (samples) are used to 

represent the features. These embedding features contain information about the amino acid conversation 

in the peptide sequences. The process of TAPE embedding starts by dividing each sample sequence into 

tokens in which each character (amino acid) is represented by one token. Given the sample S = {t1, t2, …, 

tn} where tj is a token in the position j in the sample S and n is the sample’s length. Embedding function 

Femb can be represented as: 

[𝑣1, 𝑣2, … , 𝑣𝑛] =  𝐹𝑒𝑚𝑏 (𝑡1, 𝑡2, … , 𝑡𝑛)       (1) 

Where vj is the features embedded for token tj which are numeric vectors. 

TAPE PLM is based on the BERT masked language model that is calculated by the product of the 

conditional probabilities of tokens in each site given all other tokens in the sequence by replacing the 

token at each position with the masked token. This enables conditional non-independence between tokens 

to be obtained. The masked language model is formulated as: 

𝑝(𝑡) = ∏ 𝑝(𝑡𝑖

𝑛

𝑖

|𝑡1, 𝑡2, … , 𝑡𝑖−1, 𝑡𝑖+1, … , 𝑡𝑛)       (2) 
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Where ti is the token in site i and n is the size of the sample sequence. 

 

The TAPE protein language model is trained on a large database called the Pfam database. The Pfam 

database contains over 31 protein sequences. The last hidden layer in the TAPE transformer is used to 

extract the embedded features. The length of extracted features for each token is 768. In our case, the 

length of each sample is 31 tokens. So, the size of extracted futures using TAPE is 768 * 31 = 23,808 

features. The properties of the TAPE transformer are shown in Table 1. The table illustrates the key 

properties of the TAPE transformer including: the number of layers, size of hidden layers, parameters’ 

number, and number of attention heads. 

 

Table 1. Properties of TAPE Transformer. 

 

Property 
Value 

number of layers 
12 

size of hidden layers 
768 

number of parameters 
92M 

number of attention heads 
12 

 

2.4. Feature Selection  

 

The extracted features from TAPE embedding are large (23,808 features) that can include noisy and 

irrelevant features that have a possibly undesirable effect on prediction results. Thus, significant and 

relevant features are selected by feature selection methods in order to avoid overfitting in the training 

process as well as to enhance prediction performance. To select the important features, we employed the 

linear SVM feature selection approach that is comparable with conventional feature selection methods, 

like information gain and odds ratio [23]. The data sample vector can be represented as 𝑥𝑖 =
(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛) where n is the feature size for each sample. In the linear-kernel SVM, the predictor can 

be represented:  

𝑦̂ =  ∑ 𝛼𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏

𝑙

𝑖

           (3) 

For the linear kernel: 

𝐾(𝑥𝑖, 𝑥) =  𝑥𝑖
  𝑇 . 𝑥                    (4) 

The linear-kernel SVM predictor can be rewritten as: 

𝑦̂ =  ∑ 𝑤𝑗𝑥(𝑗) + 𝑏           (5)

𝑛

𝑗

 

Where b is the bias scaler, 𝛼 is the initial values for the coefficients, and 𝑤𝑗=∑ 𝛼𝑖𝑥𝑖
(𝑗)𝑙

𝑖  . For feature 

selection, the absolute value |𝑤𝑗| represents the weight for feature j. The features with the highest 

coefficient values of |𝑤𝑗| are selected as optimal features for classification. As the features with low 

absolute values of 𝑤𝑗 have a low impact on the predictions. This indicates that these features are not 

important for training or classification, and as a result, they could be skipped over in the training stage as 
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well [23]. We used LinearSVC and SelectFromModel functions in the Scikit-learn Python library [24] for 

feature ranking and selecting the best features. The top 675 features are selected from the 23,808 extracted 

features by the linear SVM.  

 

2.5. Classification using XGBoost 

 

Extreme gradient boosting (XGBoost) is a state-of-the-art ensemble-based algorithm that is developed 

for data classification. It has been proved that it outperformed the other traditional classifiers due to its 

scalability, efficiency, and speed. XGBoost is based on gradient boosting (GB) and decision tree 

algorithms [25]. Distributed, parallel, and out-of-core computing make XGBoost faster than the other 

machine learning algorithms. Both GB and XGBoost execute boosting learners using the gradient descent 

loss technique. GB and XGBoost can be clarified as follows [26]. Given the dataset D=[x,y] where x 

represents the features and y represents the independent classes. In GB, assuming there are K boosts and 

B additive functions to predict the results. The 𝑦𝑖̂ represent the prediction for the sample i in boost b and 

𝑓𝑏 denotes to the tree structure that has weight wj. Then the final prediction for the sample i is represented 

by: 

𝑦𝑖̂ = ∑ 𝑓𝑏(𝑥𝑖)

𝐵

𝑏=1

       (6) 

 The loss of the XGBoost prediction model is minimized by the gradient descent algorithm. XGBoost 

multiple have hyperparameters that can be adjusted to avoid overfitting and improve performance. The 

optimal configuration for the XGBoost hyperparameters is clarified in section 3.1. We implement 

XGBoost by XGBoost python library [25]. 

 
2.6. Model Evaluation 

 

Firstly, ten-fold cross-validation is implemented on the training dataset in which the dataset is partitioned 

randomly into ten folds. Then every fold is selected for the test and the other nine are for training and the 

result is calculated by the average of the testing result. Secondly, an independent (blind) dataset from the 

beginning is utilized for independent testing and compares the proposed model with the previous studies. 

Five common performance metrics are employed involving Matthew’s correlation coefficient (MCC), 

sensitivity, specificity, and accuracy. Moreover, AUC (Area Under the receiver operating characteristic 

Curve (ROC)) computes the classifier's capability to separate binary data by displaying the true positive 

rate against the false positive rate. These metrics are represented as: 

 
 

𝑀𝐶𝐶 =
𝑡𝑝 × 𝑡𝑛 − 𝑓𝑝 × 𝑓𝑛

√(𝑡𝑝 + 𝑓𝑝)(𝑡𝑝 + 𝑓𝑛)(𝑡𝑛 + 𝑓𝑝)(𝑡𝑛 + 𝑓𝑛)
              (7) 

 

Accuracy =  
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
              (8) 

 
 

Sensitivity =
𝑡𝑝

𝑓𝑛 + 𝑡𝑝
              (9) 
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Specificity =  
𝑡𝑛

𝑓𝑝 + 𝑡𝑛
              (10) 

where tp denotes the positive sites’ number that are truly classified, fp (false positive) denotes the positive 

sites’ number that are untruly classified, tn denotes the negative sites’ number that are truly classified, 

and fn denotes the negative sites’ number that are untruly classified.  

 

3. Results and Discussion 

 

3.1. Parameter Setting 
 

XGBoost classifier has various hyperparameters that can be tuned to avoid training overfitting as well as 

to improve prediction performance. Table 2. shows the XGBoost hyperparameters, their experimented 

value ranges, and the optimal value used in the model construction.  

 

Table 2. Hyperparameters setting for XGBoost. 

 

Parameter Value Range 
Optimal Value 

learning_rate 0 to 1 
0.1 

max_depth 1 to 10 
2 

min_child_weight 1 to 10 
3 

subsample 0 to 1 
0.7 

booster gbtree, gblinear 
Gbtree 

 

The first tuned parameter is the learning rate that represents the step size shrinkage for overfitting reducing 

where the default value is 0.3. We tried the values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 and the 

optimal performance was with the learning rate value 0.1. The second parameter is the max_depth which 

denotes the maximum depth of the tree. If the value of max_depth increases, the model will be prone to 

overfitting. We tried the integer values between 1 and 10 and the optimal results were with the value 2. 

The third parameter is the min_child_weight which represents the minimum allowable summation of 

child weight. The model will be more conservative the greater min child's weight is. We tried the integer 

values between 1 and 10 and the optimal results were with the value 3. The fourth parameter is the 

subsample which represents the subsamples of the model before constructing the tree. The XGBoost 

would randomly sample 50% of the training data before constructing trees if it was set to 0.5. In each 

boosting cycle, subsampling will take place once. We tried the values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

and 0.9 and the optimal performance was with the learning rate value 0.7. The last parameter is the booster 

which represents the method of boosting in which there are two values (gbtree used for tree-based model 

and gblinear used for the linear-based model). we used the gbtree booster. 

 

3.2. Evaluation using Cross-validation 

 

Many folds of cross-validation are implemented on the training dataset. In every implementation, data is 

randomly split into m-fold in which m-1 is employed for training and one for testing. Three-fold, five-
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fold, eight-fold, and ten-fold cross-validations are implemented. Table 3. Illustrates the results of these 

implementations. We can observe that the ten-fold cross-validation has the highest performance result 

among all the implemented cross-validations. The performance results are 0.748 accuracy, 0.7473 

sensitivity, 0.7484 AUC, and 0.4962 MCC.  

 

Table 3. Cross-validation performance results on the training dataset. 

Fold 

number 
Accuracy Sensitivity Specificity  AUC MCC 

three-fold 0.7363 0.7335 0.7401 0.7368 0.4737 

five-fold 0.7404 0.7323 0.7493 0.7408 0.4815 

eight-fold 0.7383 0.7340 0.7429 0.7384 0.4773 

ten-fold 0.7480 0.7473 0.7494 0.7484 0.4962 

 

From the table, it is observed that the five-fold has the closest performance results to the ten-fold. The 

ten-fold improved the MCC and sensitivity by 0.01 % over The five-fold cross-validation. The three-fold 

and eight-fold are lower than the ten-fold by about 0.02% MCC.   

 

3.3. Comparing with Machine Learning Algorithms 
 

XGBoost is compared to five machine learning algorithms: SVM, RF, Linear Regression (LR), Naïve 

Base (NB), and KNN on the independent dataset. Table 4. illustrates the performance comparison between 

different machine learning with our proposed method. The comparison shows that XGBoost achieved 

high-performance results with 0.7761 accuracy, 0.7391 sensitivity, 0.8130 specificity, 0.8295 AUC, and 

0.5537 MCC. Figure 3. It is observed that XGBoost outperforms the other traditional machine learning 

algorithms including SVM, RF, LR, NB, and KNN in terms of accuracy, specificity, AUC, and MCC 

performance metrics. In terms of sensitivity, KNN outperforms the other classifiers but with low 

performance with the other metrics. The random forest classifier comes after XGBoost in performance. 

That is mean that the tree-based classifiers performed better than the other machine learning algorithms. 

 

Table 4. Performance of XGBoost model with SVM, RF, LR, NB, and KNN on the independent dataset. 

Classifier Accuracy Sensitivity Specificity  AUC MCC 

SVM 0.7457 0.7609 0.7304 0.8273 0.4915 

RF 0.75 0.7348 0.7652 0.8229 0.5002 

LR 0.713 0.7391 0.6870 0.7841 0.4267 

NB 0.7391 0.6696 0.8087 0.8104 0.483 

KNN 0.7196 0.7696 0.6696 0.7844 0.4413 

XGBoost 0.7761 0.7391 0.8130 0.8295 0.5537 

 

3.4. Comparing to the Existing Tools 

 

The proposed method is compared with two recent tools for O-glycosylation site prediction which include 

Captor [19] and OGP [20] on the independent dataset. for fairly comparison, we used the same 

independent set that was used in Captor. The performance results of the comparison are shown in          
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Figure 3. It is clearly found that our proposed method outperforms Captor and OGP in terms of sensitivity, 

specificity, AUC, and MCC. In terms of accuracy, the Captor exceeds our method by 1%. The proposed 

method improved the sensitivity by 13% over Captro and 24% over OGP. The proposed method also 

improved the specificity by 1% over Captro and 2% over OGP. Additionally, the proposed method 

increased AUC by 12% compared to OGP and by 3% over Captro. The MCC was also improved by 40% 

compared to OGP and about 30% compared to Captro by the proposed method. 

  

 
 

Figure 3. Comparison of performance results of the proposed method against the existing tools on the independent dataset. 

 

4. Conclusions and Future Work 

 

In this paper, we proposed a model for O-glycosylation site prediction using a pre-trained protein 

language model and machine learning. The dataset is collected from the OGP repository and then it was 

preprocessed. The TAPE protein language model is employed for feature extraction by embedding 

strategy. The extracted features are then reduced by the linear SVM method to avoid overfitting and 

improve performance. XGBoost machine learning method was used for training and classification. The 

ten-fold cross-validation and independent test were employed to evaluate and validate with accuracy, 

sensitivity, specificity, AUC, and MCC performance measures. The proposed model was compared with 

the traditional machine learning methods using the independent dataset in which it outperformed the other 

machine learning models. On the same independent dataset that is used by the Captro tool, the proposed 

method was compared to the latest tools for O-glycosylation site prediction including Captor and OGP 

tools. The comparison results showed that the proposed method outperformed other existing tools. This 

indicates that features extracted from protein language model embedding perform better than features 

extracted from traditional feature extraction methods like physicochemical, evolutionary, MSA, or 

structural-based features. In the future, we plan to use other protein language models and machine learning 

techniques to predict glycosylation sites. 
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