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Abstract: The field of genomic bioinformatics is continually challenged by the need for precise 

classification of viral DNA sequences. The challenge of accurately classifying viral sequences is crucial 

for the development of diagnostic and therapeutic strategies for any viral outbreaks. This study presents 

a comprehensive approach integrating two distinct deep learning models, namely the Genetic Algorithm 

(GA) optimized Convolutional Neural Networks (CNN) hybrid model and the CNN-Extreme Learning 

Machines (ELM) model aiming to enhance the classification of viral DNA sequences across specific 

viruses and viral families.  

A comprehensive data preprocessing strategy is employed, wherein both datasets undergo k-mer, label, 

and one-hot vector encoding. This allows for a uniform and comparative analysis across different models 

and datasets. When the optimized GA-CNN is applied to the more generic viral family dataset, it 

demonstrates a good adaptability with an accuracy of 95.88% achieving a higher result than the CNN-

ELM. In contrast, the CNN-ELM, when tested on the specific virus dataset, maintains robust feature 

extraction capabilities, faster training time but lower than the optimized GA-CNN model achieving an 

accuracy of 92.7%. 

A comparative analysis of training times is also employed in this study. The CNN-ELM model shows a 

notable efficiency, with a 34% faster training time compared to the GA-CNN. Moreover, when both 

models are applied to the new generic dataset, a comparative study with other deep learning models is 

conducted. Remarkably, the GA-CNN outperforms other models, achieving the highest classification 

accuracy of 95.88%. 

      

Keywords: Genomic Bioinformatics, Viral DNA Classification, GA-CNN, CNN-ELM, Deep Learning, 

Data Preprocessing, Encoding Methods, Training Efficiency, Comparative Analysis. 
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1. Introduction 

 

Viruses are microscopic agents capable of infecting a wide range of organisms. They have always been 

the subject of extensive research due to their impact on health and ecology. These entities are 

characterized by their simple structure and complex behavior. They are also known for their ability to 

replicate only within living cells [1,2]. The challenge they pose to public health, particularly evident in 

the wake of recent global pandemics, underscores the urgent need for advanced research in virology. Such 

a challenge was very prominent during the recent COVID-19 pandemic at which the world struggled 

greatly. Genomic sequencing has emerged as a powerful tool in understanding these pathogens [3]. This 

enables scientists to delve deeper into the genetic structure and function of these viruses. 

The rise of high-throughput sequencing technologies has revolutionized the study of viral genomes [3]. 

These advancements have led to the accumulation of vast amounts of viral genetic data, stored in public 

databases such as the National Center for Biotechnology Information (NCBI) [4]. Access to such 

comprehensive genomic information has opened new avenues for research, particularly in the fields of 

diagnostics, vaccine development, and antiviral therapies. However, the sheer volume and complexity of 

this data presents significant analytical challenges, necessitating the development of sophisticated 

computational tools. 

In response to these challenges, machine learning and deep learning approaches have gained prominence 

[5,6,7]. These methodologies are known for their ability to handle large datasets and extract meaningful 

patterns. They are particularly well-suited for genomic analysis. Deep learning, a subset of machine 

learning inspired by the structure and function of the brain, has further enhanced these capabilities. 

The transformative impact of machine learning and deep learning techniques in the domain of genomic 

bioinformatics has been nothing short of revolutionary, particularly in virus classification. These 

advanced computational methods have shown an uncanny ability to unravel the intricacies of viral genetic 

sequences. By employing deep learning models, researchers have been able to identify nuanced patterns 

embedded within the DNA or RNA of viruses which was very challenging before [2],[8]. This capability 

not only facilitates precise classification of various viral strains but also enriches our understanding of 

their evolutionary trajectories and the complex web of diversity they exhibit. 

The objective of this paper is to integrate two distinct models to analyze and enhance the classification of 

viral DNA sequences across both specific viruses and viral families. The first model is the Genetic 

Algorithm Optimized Convolutional Neural Network (GA-CNN) model which was used to classify viral 

DNA before. The success of the GA-CNN model can be attributed to its ability to optimize the neural 

network's weights effectively using genetic algorithms [10]. The GA-CNN model's design allows it to 

adapt to the unique challenges posed by viral DNA and RNA sequences. Viral genomes are often 

characterized by high mutation rates and genetic variability, presenting a moving target for any 

classification algorithm. The GA-CNN model, with its optimized CNN architecture, has demonstrated a 

remarkable ability to navigate these challenges. It effectively captures the subtle genetic variations and 

patterns that are key to distinguishing between different viruses. 

The other model is the Convolutional Neural Network with Extreme Learning Machines (CNN-ELM) 

[11].  It harnesses the power of Convolutional Neural Networks (CNNs) for extracting key features from 

complex viral sequences. CNNs, known for their proficiency in pattern recognition [12,13]. In tandem 

with the CNN, the model employs Extreme Learning Machines (ELMs) for the classification phase. 

ELMs are renowned for their rapid learning capabilities, setting them apart from other machine learning 

algorithms [14,15]. This speed is particularly advantageous in the context of viral classification, where 

the ability to quickly process and classify large volumes of genetic data can be extremely valuable.   This 

comprehensive approach aims to harness the strengths of each model, applying them to a wider range of 

datasets and encoding methodologies. Therefore, this study explores the adaptability and efficiency of 
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these models in a broader genomic context. This study is structured in the following manner: Section 2 

provides an overview of the relevant literature in the topic. The datasets utilized, along with the various 

preprocessing methods employed, are detailed in Section 3. Subsequently, Section 4 outlines the complete 

methodology used in this research. The findings from the experiments are presented in Section 4. The 

final section, Section 5, concludes the paper with a summary and takeaway and future experiments and 

work. 

 

2. Related Works 

 

Numerous studies have employed diverse models and techniques to effectively classify viral sequences. 

These approaches utilize a wide range of methodologies aimed at accurately classifying and 

distinguishing different viral genetic information. 

Ming et al. [16] present HostNet, a deep learning framework that enhances virus-host prediction accuracy. 

HostNet utilizes a Transformer-CNN-BiGRU architecture and incorporates two modules for improved 

sequence representation. Experimental results demonstrate that HostNet outperforms existing deep 

learning methods in terms of host-prediction accuracy and F1 score. The framework shows promise in 

addressing challenges related to sparse and varying-length virus sequence data, making it a valuable tool 

for virus-host prediction in various biological contexts. 

A study by Humayun et al. [17] introduced a novel method to classify Avian Influenza A viral (AIAV) 

sequences into subtypes based on the hemagglutinin (HA) and neuraminidase (NA) genes. By analyzing 

DNA sequence data and considering physicochemical properties, this approach employed machine 

learning techniques, comparing four classifiers: Naïve Bayes, Support Vector Machine (SVM), K-nearest 

neighbor (KNN), and Decision Tree. Among these classifiers, the Decision Tree model exhibited the 

highest accuracy, reaching 95%.  

Another recent study by Alakus et al. [18] utilized DNA sequences of the viruses causing monkeypox 

and warts and were analyzed using a deep learning algorithm. The study consisted of four stages: 

obtaining the DNA sequences, mapping the sequences using various methods, classifying the mapped 

sequences with a deep learning algorithm, and comparing the performance of the DNA-mapping methods. 

The results showed an average accuracy of 96.08% and an F1-score of 99.83%, demonstrating the 

effectiveness of the deep learning model in accurately classifying the DNA sequences and distinguishing 

between monkeypox and warts based on their genetic information. 

Tampuu et al. introduced ViraMiner [19], an innovative deep learning-based approach that utilizes 

Convolutional Neural Networks (CNNs) to detect patterns and pattern frequencies in unprocessed 

metagenomics contigs. By applying this dual approach, the researchers successfully tested their method 

on a vast dataset of human samples, specifically targeting viral sequences. The results demonstrated an 

impressive area under the ROC curve of 0.923, indicating the ability of ViraMiner to accurately identify 

viral sequences within raw metagenomic contigs derived from various human samples. 

Wang et al. [20] presented an innovative approach that merges CNNs with ELMs to enhance feature 

extraction and achieve efficient classification of Synthetic Aperture Radar (SAR) images. The authors 

improved the conventional CNN model by replacing the Sigmoid activation function with the more 

effective Rectified Linear Unit (ReLU) activation function at which they employed ELM as a classifier. 

Through testing their method on the MSTAR database it achieved remarkable results, attaining 100% 

accuracy while maintaining fast execution time due to the ELM layer used. 

 

Furthermore, in a previous study, the Genetic Algorithm (GA) optimized Convolutional Neural Network 

(GA-CNN) model was introduced [9]. This model represents a synergy of two powerful computational 
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concepts: the robust feature extraction inherent in Convolutional Neural Networks (CNNs) and the 

efficiency of optimization provided by Genetic Algorithms (GAs). The GA-CNN model, as detailed in 

previous research, has successfully harnessed these capabilities to analyze and classify specific viral 

sequences with remarkable accuracy [9]. 

El-Tohamy et al. [9] developed an optimized Convolutional Neural Network (GA-CNN) for classification 

of viral genomes. It was also enhanced to outperform previous work of Gunasekaran, Hemalatha, et al. 

[21] by introducing more virus labels. It used the GA to optimize the CNN weights and the optimized 

ADASYN for preprocessing. This approach combined the powerful feature extraction capabilities of 

CNNs with the optimization strength of GAs. The GA-CNN model was adeptly applied to a dataset of 

specific viral sequences using 3 encoding methods label , one-hot and k-mer encoding, achieving the 

highest classification accuracy of 94.88% using label encoding .  El-Tohamy et al. [11] also introduced 

Convolutional Neural Network with Extreme Learning Machines (CNN-ELM) model with the generic 

diverse virus family dataset collected. This model achieved a notable accuracy of 94.54% using k-mer 

encoding for classifying a broad spectrum of viral families. The CNN-ELM model uniquely integrated 

CNNs for in-depth feature extraction from viral sequences with the rapid and efficient classification 

capabilities of ELMs. This architecture proved particularly effective in handling the diversity present in 

viral genomes with a confusion matrix proving powerful performance across all the 10 major viral 

families in the dataset. The objective of this study is to integrate the GA-CNN and CNN-ELM models 

presented by El-Tohamy et al. in [9] and [11]. The methodology involves a comprehensive comparative 

application and evaluation of different encoding techniques: k-mer, label, and one-hot vector to explore 

the potential results and integrate the models with both specific virus and diverse viral family datasets. 

 

3. Materials & Methods 

 

3.1 Dataset Collection: 

 

The current study leverages two distinct datasets. The Specific Viral DNA Dataset [9] and the viral family 

dataset [11]. These datasets are crucial for evaluating the adaptability and effectiveness of the models 

across various viral genetic contexts. The first dataset was obtained from the National Center for 

Biotechnology Information (NCBI). It includes complete DNA sequences of specific viruses, namely 

COVID, SARS, MERS, dengue, hepatitis, influenza, Zika, and EBOLA. Each sequence in this dataset is 

provided in a FASTA file format. The sequence lengths vary significantly, ranging from as few as 8 

nucleotides to as many as 38,012 nucleotides. The total number of sequences amassed in this dataset is 

86,637. The dataset exhibits an imbalance in class distribution, with certain viruses like COVID having a 

significantly higher number of samples compared to others like Zika and EBOLA. 

This imbalance is addressed by employing the Adaptive Synthetic Sampling Approach (ADASYN) [22] 

to generate synthetic data for under-represented classes, enhancing the diversity of the dataset. 

Table 1 provides a detailed distribution of each class label and the count of samples in each label. 

 
Table 1: Specific Virus dataset description 
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Class Label Number Of Samples 

COVID 45216 

SARS 7311 

MERS 6735 

Dengue 1994 

Hepatitis 8577 

Influenza 11862 

Zika 1920 

EBOLA 3022 

 

The second dataset is a robust viral family dataset collected to be a generic dataset for the classification 

of a viral family instead of specific viruses. The dataset was collected from the NCBI public database. 

This dataset is designed to capture the genetic diversity and evolution of various virus families. It includes 

DNA sequences from ten major viral families: Coronaviridae, Flaviviridae, Togaviridae, 

Paramyxoviridae, Bunyaviridae, Rhabdoviridae, Filoviridae, Herpesviridae, Adenoviridae, and 

Reoviridae. These are the major 10 viral families each with entire genomes for the major viruses in each 

family. The dataset structure consists of sequences in FASTA format. This dataset provides a 

comprehensive collection of 50,000 viral genome sequences, equally distributed across the ten virus 

families. For each family, four representative viruses with the highest counts were selected to ensure a 

wide coverage of genetic diversity for each of the viral families. Each virus family in the dataset is 

represented by 5,000 sequences, ensuring an equal distribution and a representative sampling of the viral 

landscape. Table 2 summarizes the virus families and their representative viruses. Table 3 presents the 

average length of genome sequences for each virus family in the dataset, highlighting the range of genome 

sizes. 

 
Table 2: Viral family dataset and their representative viruses 

 
Table 3: Viral Family dataset sequence description 

Feature Description 

File Format FASTA 

Sequence Type DNA 

Number of Entries 50,000 (10 families x 5,000 sequences) 

Number of Families 10 

Virus Family Representative Viruses 

Coronaviridae SARS-CoV-2, SARS-CoV, HCoV-OC43, and HCoV-229E 

Flaviviridae Dengue virus, West Nile virus, Zika virus, Yellow fever virus 

Togaviridae 
Chikungunya virus, Eastern equine encephalitis virus, Sindbis virus, Semliki 

forest virus 

Paramyxoviridae Measles virus, Mumps virus, Sendai virus, Newcastle disease virus 

Bunyaviridae 
La Crosse virus, Hantaan virus, Rift Valley fever virus, and Crimean-Congo 

hemorrhagic fever virus. 

Rhabdoviridae Rabies virus, Vesicular stomatitis Indiana virus, Piry virus, Hirame rhabdovirus 

Filoviridae Ebola virus, Marburg virus, Reston virus, Bundibugyo virus 

Herpesviridae 
Human herpesvirus 1, Human herpesvirus 2, Varicella-zoster virus, Epstein-Barr 

virus 

Adenoviridae 
Human adenovirus C, Human adenovirus D, Bovine adenovirus A, Canine 

adenovirus 1 

Reoviridae 
Rotavirus A, Bluetongue virus, Mammalian orthoreovirus type 3, Avian 

orthoreovirus 
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Feature Description 

Sequences per Family 5,000 

Header Line Starts with '>' followed by a unique identifier and description 

Sequence Data Single-letter codes for nucleotides (A, C, G, T) 

Line Length 60-80 characters per line 

 

3.2 Data Preprocessing: 

 

Data preprocessing is a crucial component in both machine learning and deep learning algorithms, 

significantly impacting the accuracy of the models used. DNA sequences are composed of continuous 

letter strings, differing from typical text data which is separated by spaces and includes distinct words or 

phrases [23]. Consequently, k-mer encoding [24] is employed to transform these DNA sequences into 

sequences of 'words', effectively maintaining the position of each nucleotide within the sequence. 

Additionally, two methods of vector encoding; one-hot vector encoding and label encoding; are applied 

to convert these sequences into numerical forms [24]. Unlike image data, which is typically processed in 

a two-dimensional numerical matrix format for CNN input, textual data like DNA sequences is 

characterized by a one-dimensional chain of characters. Therefore, this data requires conversion into 

numerical values for appropriate input into the deep learning models. Both datasets will undergo k-mer 

encoding. For each sequence, the DNA string is broken down into subsequences (k-mers) of length k. In 

line with the approach used by [11] which gave the highest accuracy among tried k values, a length of 

k=4 will be utilized. This process results in transforming each sequence into a collection of overlapping 

k-mers, which are then used as input features for the models. Additionally, label encoding will be applied 

to the datasets. In this method, each nucleotide (A, C, G, T) is assigned a unique numerical value, 

converting the sequences into arrays of integers. This encoding is less complex than k-mer encoding but 

still retains the sequential nature of the DNA, which is crucial for models like CNN-ELM that rely on 

pattern recognition in sequences. The third encoding method to be employed is one-hot vector encoding. 

Each nucleotide is represented by a binary vector, ensuring a distinct representation. 

For example, Adenine (A) could be encoded as [1,0,0,0], C as [0,1,0,0], and so on. 

One-hot encoding and label-encoding was not experimented with before in [11] which is important to test 

their resulting performance as well and to be used for comparative analysis. 

As a result, the preprocessing steps for both the datasets utilized in this study are as follows: 

 

A) Data Cleaning: 

 

Both datasets undergo an initial cleaning process by removing any non-DNA characters, gaps, or 

ambiguous bases, leaving only the four nucleotide bases (A, C, G, T). 

 

B) Encoding Methods: 

 

A key preprocessing step involves k-mer encoding of the sequences, with a length (k) set to 4. This 

process involves breaking down each DNA sequence into overlapping subsequences (k-mers) using a 

sliding window approach [25]. The sliding window, of size k=4, moves along the sequence, capturing 

each k-mer at every position, thus preserving local sequence patterns. The resulting k-mers are then 

hashed to unique integer values using the Python hash() function, transforming them into numerical 

features. In addition to k-mer encoding, label encoding and one-hot vector encoding are applied to the 

sequences. Label encoding assigns a unique number to each nucleotide, transforming the sequence into 
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an array of integers. One-hot vector encoding provides a binary vector representation for each nucleotide, 

offering a distinct and comprehensive numerical representation. 

 

C) Dataset Splitting: 

 

The final preprocessing step involves splitting the data into training, validation, and testing sets. 

This division is critical for evaluating the models' performance and for avoiding overfitting. 

A standard split of 70% training, 15% validation, and 15% testing will be used. The processed datasets 

will be utilized to train and test the GA-CNN and CNN-ELM models. Each model will be evaluated on 

both the specific virus dataset and the viral family dataset, following the respective encoding methods. 

 

3.2 Classification Methods: 

 

3.2.1 Genetic Algorithm (GA) CNN Optimization 

 

The Genetic Algorithm is a heuristic search and optimization technique inspired by the process of natural 

selection in biological evolution [10]. In the context of neural network optimization, GA is employed to 

CNNs by optimizing their weights and hyperparameters [10],[26]. This optimization aims to improve the 

model's accuracy in classifying viral DNA sequences. The GA optimization process generally works as 

follows: 

 

1) Population Initialization: 

In the initial step, a population of potential solutions (chromosomes) is generated. Each chromosome 

represents a specific configuration of the CNN, comprising weights and hyperparameters. 

The initial population is created randomly, ensuring a diverse range of solutions. 

2) Fitness Evaluation: 

Each chromosome is assessed based on its fitness, which is determined by the performance of the CNN 

configuration it represents. 

The fitness function is typically the accuracy or the loss function of the CNN when applied to a validation 

dataset. The fitness score reflects how well the chromosome's CNN configuration can classify the viral 

DNA sequences. 

3) Selection Process: 

Chromosomes are selected for reproduction based on their fitness scores. Selection methods like roulette 

wheel selection or tournament selection are utilized, which prioritize chromosomes with higher fitness 

but also maintain diversity in the gene pool. 

4) Crossover and Mutation: 

Crossover (recombination) and mutation are genetic operators used to generate new offspring (solutions). 

Crossover combines the features of two parent chromosomes to create offspring, introducing new solution 

variations. Mutation randomly alters parts of a chromosome, enabling the exploration of new regions in 

the solution space. 

5) Iterative Process: 

The GA undergoes multiple iterations or generations, with each generation consisting of the selection, 

crossover, and mutation processes. Throughout these generations, the population of chromosomes 

evolves, ideally leading to an increase in the average fitness of the population. 

6) Convergence and Solution: 
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The GA concludes when it reaches a predefined stopping criterion, such as a maximum number of 

generations or a plateau in fitness improvement. The best-performing chromosome at the end of the GA 

process is selected as the optimal solution. This chromosome's CNN configuration is then used for the 

final model deployment. 

The GA optimizes the CNN by finding the best possible set of weights and hyperparameters that result in 

the highest classification accuracy. This optimization process is crucial as it fine-tunes the CNN to better 

capture and learn from the complex. The fitness function used in this study is a combination of 

classification accuracy and a loss function measure. A higher fitness score indicates a more accurate and 

reliable CNN model for classifying viral sequences. After the fitness evaluation of each generation, the 

GA algorithm updates the CNN weights and hyperparameters according to the best solutions found. This 

process is repeated iteratively, with the CNN model undergoing continuous refinement with each GA 

iteration. After the fitness evaluation of each generation, the GA algorithm updates the CNN weights and 

hyperparameters according to the best solutions found. This process is repeated iteratively, with the CNN 

model undergoing continuous refinement with each GA iteration.  Table 4 Summarizes the GA layer used 

in this study. 

 
Table 4: Summary of the GA optimization layer 

 

Step Description Parameters and Values 

Population Initialization Generate initial population of chromosomes 50 

Fitness Evaluation Evaluate fitness of each chromosome CNN accuracy 

Parent Selection Select chromosomes for reproduction Selection Method: Roulette wheel 

Crossover Combine features of parent chromosomes Crossover Probability: 70% 

Mutation Introduce random changes in offspring Mutation Probability: 1% 

Iteration Repeat selection, crossover, and mutation  

Convergence Algorithm concludes Fitness stagnation method 

 

3.2.2 Convolutional Neural Networks (CNN) 

 

Convolutional Neural Networks (CNNs) are deep neural networks predominantly used in the field of 

machine learning, especially for analyzing image data and are used and highly effective in other types of 

structured data analysis, including time-series and genetic sequence data [9],[27,28]. In the context of 

viral DNA sequence classification, CNNs serve a critical role. CNNs automatically extract features from 

input sequences without the need for manual feature engineering. They are adept at identifying patterns 

and motifs within the viral DNA sequences, crucial for accurate classification. In the GA-CNN-LSTM 

model [9], CNN acts as the initial layer responsible for feature extraction. The extracted features are then 

passed to the LSTM layers for sequence modeling, capturing the temporal dynamics within the viral 

sequences. The GA optimizes the CNN part of the model, tuning its weights and hyperparameters to 

improve classification accuracy. The CNN-ELM model employs CNN as the feature extraction layer. The 

features extracted by CNN are fed into the ELMs for classification. This combination leverages the 

strength of CNN in feature extraction and the efficiency of ELM in classification, making the model both 

powerful and fast. Table 5 shows a summary of the CNN layer utilized as a feature extraction layer in the 

CNN-ELM architecture. Table 6 shows a summary of the CNN layer utilized in the GA-CNN architecture. 

 
Table 5: Summary of the CNN layer utilized as a feature extraction layer in the CNN-ELM architecture. 
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Layer Parameters 

Input Layer K-mer encoded of DNA sequence 

Conv1 filters=32, kernel=4 

Pool1 pool_size=2 

Conv2 filters=64, kernel=4 

Pool2 pool_size=2 

Flattening  

FC1 neurons=256 

Dropout rate=0.5 

 
Table 6: Summary of the CNN layer utilized in the GA-CNN architecture. 

 

Layer Description 

Input Layer 1D input of encoded DNA sequences 

Convolutional Layer 1 128 filters, Kernel size: 2x2, Activation: ReLU 

MaxPooling Layer 1 Pool size: 2x2 

Convolutional Layer 2 64 filters, Kernel size: 2x2, Activation: ReLU 

MaxPooling Layer 2 Pool size: 2x2 

Fully Connected Layer Feature integration 

Output Layer Softmax, Multinomial probability distribution for each specific virus 

 

3.2.3 Extreme Learning Machines (ELMs) 

 

Extreme Learning Machines (ELMs) represent a distinct and efficient category of feedforward neural 

networks known for their speed and simplicity [29,30]. ELMs are significantly faster than traditional 

neural networks due to their non-iterative training process, which involves a one-step learning approach. 

This speed is crucial in handling large datasets, a common scenario in genomic studies. In the CNN-ELM 

model, the role of ELM is to classify viral DNA sequences based on features extracted by the CNN layer. 

This integration capitalizes on the strength of CNNs in feature extraction and the efficiency of ELMs in 

classification. The ELM serves as the final classification layer, receiving the high-dimensional feature 

vectors processed by the CNN and efficiently mapping them to the output classes. The ELM in the CNN-

ELM model consists of a hidden layer with a predefined number of neurons. The activation function used 

is typically sigmoid or Gaussian, enabling the network to handle the non-linear relationships in the data. 

The model's output layer corresponds to the number of virus families or specific virus types in the 

classification task. The selection of Extreme Learning Machines in this study is a strategic choice driven 

by the need for a fast, efficient, and accurate classification method in the realm of viral DNA sequence 

analysis. Table 7 shows the summary of the ELMs layer. 

 
Table 7: The summary of the ELM layer used. 

 

Layer Description 

Input Layer 256 inputs from the CNN feature extraction layer 

Hidden Layer 128 Neurons 

Output Layer 10 neurons with softmax activation function  

Layer Description 

 

3.2.4 CNN-LSTM and CNN-Bidirectional LSTM Layers: 
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LSTM (Long Short-Term Memory) networks are a type of Recurrent Neural Network (RNN) specifically 

designed to learn long-term dependencies in sequence data [31]. In the context of viral DNA sequence 

classification, LSTM layers are used to predict classification labels based on the features extracted by the 

CNN layers. The integration of LSTM with CNN allows the model to capture both the local features 

(through CNN) and the sequential dependencies (through LSTM) in the DNA sequences. The 

bidirectional LSTM (BiLSTM) extends the LSTM capability by processing the sequence data in both 

forward and reverse directions, providing a more comprehensive understanding of the sequence context. 

The same architecture and hyperparameters are used as in [9]. 

 

A complete system architecture showing a summary of the classification methodology is shown in Figure 

1. 
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Figure. 1: System architecture of the proposed classification methodology 

 

4. Experimental Results 
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For the experiments, a NVIDIA GeForce GTX 3060 graphics card with 12GB of VRAM. The processing 

power was supplied by an Intel Core i7-11390H processor, supported by 64GB of RAM. The software 

environment utilized Python 3.8 and TensorFlow 2.4 were used mainly for constructing and training the 

deep learning models, favored for their flexibility and ease of use in neural network applications. The 

datasets were divided following a standard split ratio of 70% for training, 15% for validation, and 15% 

for testing. This division was used to ensure a balanced approach to model training and evaluation. The 

Genetic Algorithm (GA) optimization parameters included a population size of 50, a crossover rate of 

70%, a mutation rate of 1%, and a total of 50 generations and selection used roulette wheel method. First, 

three different encoding methods are evaluated using GA-CNN and CNN-ELM models across the two 

datasets. Table 8 and 9 show the resultant accuracies for both datasets respectively for the different 

encoding methods. 

 
Table 8: Encoding Methods Comparison using GA-CNN Model 

 

Encoding Method Accuracy on Specific Viral Dataset (%) Accuracy on Viral Families Dataset (%) 

k-mer (k=4) 93.45 95.88 

One-hot Vector 91.30 94.80 

Label Encoding 90.25 94.20 

 
Table 9: Encoding Methods Comparison using CNN-ELM Model 

 

Encoding Method Accuracy on Specific Viral Dataset (%) Accuracy on Viral Families Dataset (%) 

k-mer 92.70 94.54 

One-hot Vector 90.60 93.80 

Label Encoding 89.55 93.20 

 

The results displayed in Tables 8 and 9 indicate that k-mer encoding consistently achieved the highest 

accuracy across both datasets for both models. Therefore, the models will be analyzed further based on 

k-mer encoding as our main encoding methodology for the rest of the results. The GA-CNN model was 

rigorously tested on the Viral Families Dataset, consisting of 50,000 sequences. The primary objective 

was to assess the model's adaptability and classification accuracy on a diverse range of viral families. 

During the training phase, the GA-CNN model exhibited a learning curve, achieving a peak training 

accuracy of 97.5%. On the testing set, which comprised 15% of the entire dataset, the GA-CNN model 

maintained a consistent performance with an accuracy of 95.88%. The genetic algorithm's optimization 

of CNN weights played a pivotal role in this adaptability, enabling the model to effectively handle the 

broader and more complex nature of the dataset. Table 10 shows the confusion matrix of the model across 

all the viral families. 
 

The CNN-ELM was utilized on the specific viral dataset as well for comparative analysis and to test its 

accuracy on these viruses. In the training phase, the CNN-ELM model demonstrated a training accuracy 

of 93.6%. This indicates a strong learning ability but slightly lower compared to its performance on the 

viral families dataset. The model achieved a validation accuracy of 92.70%. With a loss value of 0.18, the 

CNN-ELM model maintained a good level of precision. However, the slightly increased loss compared 

to its performance on the viral families dataset hints at challenges the model faces when dealing with 
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more specific and potentially varied viral sequences. The CNN-ELM model exhibited a remarkable 

efficiency in terms of training time. Despite its slightly reduced accuracy on the specific viral dataset, the 

model maintained a swift training pace. The entire training process, including epochs, was completed 

significantly faster than the GA-CNN model, underlining the ELM's inherent advantage in rapid model 

training. With an accuracy of 92.7% on the specific viral dataset and 94.54% on the viral family dataset, 

the model successfully balanced between speed and precision. This aspect is particularly noteworthy as 

it demonstrates the model's potential in scenarios where rapid training is crucial, without sacrificing 

classification accuracy much. Table 11 shows the comparative time analysis of both models with both 

datasets. 

 
Table 10: The confusion matrix of the GA-CNN Model on the Viral Family dataset across all the viral families 

 

Virus Family 1 2 3 4 5 6 7 8 9 10 

1.Coronaviridae 733 4 0 4 4 3 4 6 0 2 

2.Flaviviridae 13 715 6 6 0 6 0 5 0 6 

3.Togaviridae 0 0 719 1 0 3 1 8 1 0 

4.Paramyxoviridae 5 4 4 726 0 0 7 6 7 4 

5.Bunyaviridae 1 4 0 0 734 0 9 3 8 2 

6.Rhabdoviridae 0 0 8 3 5 712 2 5 9 0 

7.Filoviridae 1 0 4 4 7 0 731 0 9 5 

8.Herpesviridae 1 2 1 9 7 5 4 716 6 0 

9.Adenoviridae 5 3 0 4 3 1 0 4 727 5 

10.Reoviridae 5 0 6 7 6 2 8 4 4 721 

 
Table 11: Comparative Analysis of Training Times of both models on the datasets 

 

Model 
Specific Viral Dataset Viral Families Dataset 

Training Time per Epoch Total Training Time Training Time per Epoch Total Training Time 

GA-CNN ~15 minutes ~25 hours ~18 minutes ~30 hours 

NN-ELM ~10 minutes ~16.5 hours ~12 minutes ~20 hours 

 

A comparative study was conducted to assess the performance of various deep learning models in 

classifying viral DNA sequences. This analysis included state-of-the-art models specifically tailored for 

sequence data, such as Recurrent Neural Networks (RNNs), Bidirectional Long Short-Term Memory 

networks (BiLSTMs), and Graph Neural Networks (GNNs). For GNNs, the viral DNA sequences were 

transformed into graph structures, wherein each nucleotide was represented as a node, interconnected 

through edges based on nucleotide relationships. This allowed GNNs to capture the intricate 
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connectivity patterns inherent in viral sequences. Similarly, RNNs and BiLSTMs were applied to the 

sequence data, leveraging their ability to process sequential information effectively. Table 12 shows the 

comparative accuracy of these models on two distinct datasets; specific viral and viral families datasets; 

using k-mer encoding as it gave the highest accuracy as mentioned before. 

 
Table 12: The comparative accuracy of these models on two distinct datasets - specific viral and viral families datasets using 

k-mer encoding 
 

Model Accuracy on Specific Viral Dataset (%) Accuracy on Viral Families Dataset (%) 

GA-CNN 93.45 95.88 

CNN-ELM 92.70 94.54 

RNN 85.11 83.60 

BiLSTM 82.50 84.20 

GNN 80.80 82.70 

 

The resultant accuracy shows that GA-CNN achieved the highest accuracy among both the specific viral 

and viral families dataset with accuracies 93.45% and 95.88% respectively. This superior performance 

shows the efficacy of combining genetic algorithm optimization with the CNN-Bidirectional model. In 

contrast, traditional RNNs, BiLSTMs, and GNNs, while still providing good classification capabilities, 

fall short in comparison to the optimized weights of the GA-CNN model. 

 

5. Conclusion & Future Work 

 

The realm of genomic bioinformatics faces the challenge of accurately classifying viruses. This 

complexity is very complex when considering the vast array of specific viruses and diverse viral families. 

In this study, comprehensive exploration of two models the GA-CNN and the CNN-ELM applying them 

to distinct datasets - one comprising specific viruses and another encompassing various viral families that 

was previously used in the previous studies. The results demonstrated that the GA-CNN model achieved 

an accuracy of 95.88% on the viral families dataset. When applied to the specific virus dataset, the GA-

CNN and CNN-ELM models achieved accuracies of 93.45% and 92.70%, respectively. These results 

highlight the efficacy of the GA-CNN model in optimizing feature extraction for accuracy and the CNN-

ELM model's rapid training capabilities. Three encoding methods were evaluated: k-mer, One-hot Vector 

and Label Encoding. K-mer encoding methodology achieved the highest accuracy among all other 

methods on both models and datasets using k=4. Furthermore, a comparative training time analysis of 

both GA-CNN and CNN-ELM was performed which showed that the CNN-ELM is significantly faster 

than the more complex GA-CNN and gives a good classification accuracy still on both datasets. Finally, 

a comparative study was performed with other deep learning methods like RNN, BiLSTM and GNN 

which proved that GA-CNN outperformed and achieved the highest classification accuracies on both 

datasets as well. 

Future work will focus on integrating additional advanced deep learning architectures and exploring more 

sophisticated optimization techniques. The goal is to further refine the classification accuracy and 

adaptability of these models. Also, analysis with other traditional methods such as BLAST and multiple 

sequence analysis might be explored further. 
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