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Abstract: As technology continues to advance, so does the landscape of Android; based on its open-

source nature which renders it vulnerable to various risks. Therefore, the developers need to deploy and 

employ obfuscation techniques in their newly developed android applications. In this paper, we present 

an investigation into Android obfuscation detection. Our work encompasses a comprehensive 

examination of Android obfuscation techniques and an exploration of their intersection with machine 

learning. We conducted extensive experiments involving various machine learning models to detect 

obfuscation. The results show that Random Forest is the one with the most promising results with 

accuracy 99.5% in detecting Android Obfuscation. The used dataset comprises both malicious and 

benign samples, where different obfuscation techniques have been applied.  
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1. Introduction  

 

Android holds significant importance in the market as it is the most used platform according to 

Worldwide Market Share statistics [1]. As a result of the nature of Android operating system which is 

based on open-source development, Android application developers suffer from how easy their 

applications could be reverse-engineered, and thus, their code being accessible and readable. This 
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accessibility makes the applications vulnerable to code theft from individuals to build their own 

applications based on others’ work. Also, this allows malicious actors to copy and rewrite an application 

customized for their own malicious purposes. As a result, the need for a technique to safeguard sensitive 

data became critical, and code obfuscation is one way of doing it. Code Obfuscation [2] helps in doing 

this by offering a layer of protection against reverse engineering and code analysis.  

 

Code obfuscation is a technique used in making the source code of an application more difficult to be 

analyzed and reduce the readability of the code. Besides its benefits, obfuscation is a two-edged sword. 

For legitimate software, it provides an additional layer of security to help in preventing unauthorized 

access to their critical components. On the other hand, for malicious software, it poses challenges for 

security professionals in detecting malware by using automated malware detection tools as it hides its 

malicious activities [20]. The majority of the current research proposed detection approaches that focus 

on detecting each obfuscation technique separately. 

 

In this work, we proposed a framework for detecting android obfuscation with more than one technique. 

A comparative analysis is conducted to evaluate and contrast the performance of various machine 

learning algorithms in order to ascertain which one offers the most effective means of detecting the 

different obfuscation techniques. Furthermore, the feature importance is evaluated for the obfuscation 

detection problem. The proposed model efficiency is assessed with two different datasets described in 

detail in the Dataset section. 

 

We organized our paper as follows: The introduction is presented in section 1, background and 

explaining the nature of Android Application Package (APK) and how source code is compiled to an 

APK, how obfuscation is done in android and various obfuscation tools in the market in section 2. 

Section 3 reviews related work in the field. Section 4 outlines our research methodology, including data 

preprocessing, dataset, evaluation metrics, and results. Finally, the paper concludes in Section 5, 

summarizing the findings and pointing to future directions in the realm of Android obfuscation 

detection. 

 

2. Background 

 

Understanding the internal components of APK [3] is crucial for understanding how reverse engineering 

is easy for Android applications if they are not obfuscated. APK files are considered a zip file that 

encapsulates different components as 1) Android Manifest, which contains essential information about 

the application including its version, permissions, activities and more. 2) META-INF, which includes 

application signature and integrity-related information. 3) classes.dex, a file that contains the compiled 

Dalvik bytecode of the app. 4) Resource folder, which contains non-compiled resources that the 

application needs. 5) Assets, which include application assets if needed like storing data, configuration 

files, HTML files, or other resources that the application might need. 6) Lib directory, that holds 

compiled native libraries for various CPU architectures. The compilation process from source code to 

the Dalvik Virtual Machine involves several steps in the Android application development workflow. 
 

As shown in Figure 1, the Source code is writing the code of the Android application in one of its 

supported languages (i.e., Java or Kotlin).  

Bytecode is considered an intermediary component between high-level source code and runtime 

execution where the source code is compiled into java bytecode. 
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Dalvik Bytecode is an optimized representation of Android code and stored in .dex format. 
Dalvik Virtual Machine is responsible for executing Dalvik bytecode on android devices. 

 
Figure. 1: Compilation steps of Android Application 

 

As a reverse engineer, it is straightforward to decompile an Android application and retrieve all 

of those components and easily decompile Dalvik bytecode to easily human-readable source code by 

various tools such as APKtool [4], Dex2jar [5] and more. Thus, understanding all the functionalities of 

the app. Here came the importance of using obfuscation. 

 

2.1. Obfuscation in Android 

 

Obfuscation helps to prevent reverse-engineering attempts by making it harder for attackers to 

understand the source code of the app, control flow and its resource structure. There exist multiple 

obfuscation techniques. 
 

2.1.1 Obfuscation Techniques 

 

In this section, the different Android Obfuscation techniques are outlined: 

 

• Identifier Renaming: involves changing the names of classes, fields and methods of source 

code to be less descriptive so make it harder for attackers to comprehend the application's logic. 

 

 
Figure. 2.a: Code snippet before Identifier Renaming 
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Figure. 2.b: Code snippet after Identifier Renaming 
 

• String/ Class Encryption: In this technique, the developers encrypt strings and/or classes instead 

of saving strings as plain text and decrypt them at runtime. For example,  

 

Text before encryption: "Hello, World!" 

Text after encryption: "5$K7#p2!ZaP&L9*" 

 

• Control Flow Obfuscation: This technique involves modifying the flow of the code thus making 

it more complex and harder to follow. Examples of code flow obfuscation include [19]: 

▪ Junk code insertion which involves injecting redundant and irrelevant code into the 

original codebase to obfuscate the logic of the application. 

▪ Reflection involves accessing dangerous APIs of the Android Framework to employ 

dynamic code execution to invoke APIs at running time. 

▪ Call indirection which hides the direct calls to main functions to obscure the actual flow of 

the application. 

▪ GoTo/ Nop instructions insertion that disrupts the natural flow of the program either by 

adding jumps or not instructions. 

▪ Reorder code blocks involves altering the sequence of code sections within the application 

• Resource Encryption: which encrypts critical resources and assets to prevent unauthorized 

access. 
 

2.1.2 Obfuscation Tools 
 

There exists a number of obfuscation tools that have been developed lately which made obfuscation 

easy to be used. Table 1 lists the top five used obfuscation tools and their proposed features. 

 
Table 1: Popular Android Obfuscation Tools 

 

Obfuscator Features Opensource 

 

ProGuard [6] 

Identifier Renaming   

APK Shrink  

Bytecode Optimization 

    

          

 

 

DexGuard [7] 

Identifier Renaming APK Shrink 

Bytecode Optimization Control Flow Obfuscation 

              Class/ String/ Resource Encryption 

        

           ✗ 

 

Allatori [8]  

Identifier Renaming 

Control Flow Obfuscation String Encryption 

           

           ✗ 

  

DashO [9] 

Identifier Renaming 

Control Flow Obfuscation String/ Resource Encryption 

  

         ✗ 

ObfuscAPK [10] Identifier Renaming 

Control Flow Obfuscation String/ Class/ Resource Encryption 

  

            

 

3. Related Work 

 

In the literature, there are several research papers working on the Android obfuscation problem. Jiang 

et.al. [11] proposed a function-level obfuscation detection method based on a hybrid Neural Network 

model; Graph Convolutional Network (GCN) and Long Short-Term Memory (LSTM) (GCN-LSTM). 

Their proposed architecture comprised both x86 architecture and Android applications. The authors 
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used the same approach for both architectures, but each one separately due to the their difference. They 

extracted 15 features using IDAPython plugin provided by IDAPro and built multiple Machine 

Learning model including Adaboost, GaussianNaiveBayes, GradientBoosting, etc. Their findings 

showed that the one with the best accuracy was GCN-LSTM with accuracy 98.94%. 
Park et.al. [12] targeted the problem from another point of view. The authors found out that 

most of the researchers identify obfuscation at application-level and they claim that this approach is 

limited and inaccurate. Therefore, they started to employ the idea of class level obfuscation as they 

decompile the APK, then extracted the classes from classes.dex and vectorized the decompiled code to 

output vector which they fed into four different machine learning classifiers and detect four obfuscation 

techniques. Extra Trees algorithm was the best upon others used algorithms with average accuracy 

75.9% 

Mirzaei et.al. [13] presented Androdet, an obfuscation detector implemented to detect three 

types of obfuscation renaming identifier, string encryption, and control flow obfuscation. They 

extracted 30 features from the key identifiers of Dalvik bytecode from each APK including word size, 

entropy, number of nodes and more. The authors of Androdet relied on a modular online learning 

algorithm to detect those three types, each separately, and their accuracies were 92.02%, 81.41% and 

68.32% respectively. If a given APK is obfuscated with more than one of those algorithms, then the 

accuracy drops to 80.66% 

Conti et.al. [15] relied on extending Androdet to improve detection accuracy and also added two 

new detection approaches. The first one is using Natural Language Processing to identify obfuscation 

from the code and the second is transforming the code into image and classify then using image 

recognition. In their paper, they tried each approach separately then tried to combine different 

approaches to figure out the one with best accuracy their approach reaches F1 score with 98.5%.    

Wang et.al. [16] proposed a different methodology as it identifies which obfuscator is used, not 

which technique is used as proposed in the literature. The authors collected and built their dataset from 

F-droid and started to obfuscate those files using different obfuscators as ProGuard, dashO, Allatori, 

Legu and Bangcle. They used different ML models and  SVM achieved the highest accuracy of 97%. 

 

Table 2 provides a descriptive summary about previous work done in the field of android obfuscation 

detection using Machine Learning. The proposed work in [11] reaches the best accuracy among all of 

them which used Graph Convolutional Networks with Long Short-Term Memory (GCN-LSTM). This 

is a hybrid neural network architecture that combines two powerful techniques in the deep learning 

world While the field of Android obfuscation has seen significant development over the years, there 

remains a notable gap in the research landscape. Specifically, there is a limited number of studies 

addressing the challenges posed when multiple obfuscation techniques are combined together in the 

same sample. Next section will delve deeply into the methodology employed in our research on 

Android obfuscation. It will provide a comprehensive insight into the processes, techniques, and 

approaches used in the proposed method. 

 

4. System Model and Evaluation 

 

This section presents our proposed approach in detecting Android obfuscation with different 

obfuscation techniques. The proposed approach aims to detect android obfuscation that is obfuscated by 

more than one algorithm, mainly tested on renaming identifier and string encryption techniques both 
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together as they are the main obfuscation techniques used in most cases. Figure 3 shows the proposed 

system model and will be discussed in details below. 

 
Table 2: Summary of Related Work on Android Obfuscation. 

Where: IR: Identifier Renaming, SE: String Encryption, CE: Class Encryption, CFG: Control Flow Graph, Acc: Accuracy. 
 

Year Obfuscator Obfuscation Techniques  Approach Measure 

2022 [15] obfuscAPK IR, SE, Reflection, CE NLP, Code to Image  

CNN, different ML models 

Acc: 98.5% 

 2021 [11]  obfuscAPK IR, SE, CFG GCN-LSTM F1: 98.95% 

2019 [13] Allatori IR, SE, CFG SVM, MOA IR Acc: 98.5%   

SE Acc: 81.41%  

CFG Acc: 68.32%  

Overall Acc: 80.66% 

2019 [12] ProGuard  

 dashO 

DexProtector 

DexGuard 

IR, SE, Reflection, CFG Random Forest, AdaBoost, 

Extra Trees, Linear SVM 

Extra Trees:  

   IR Acc: 70.1%  

SE Acc: 77% 

CFG Acc: 80% 

Ref Acc: 76.3% 

Avg Acc: 75.9% 

2017 [16] ProGuard, dashO, 

Allatori, Legu, 

Bangcle 

IR, SE, CFG  package 

modification 

SVM, KNN, DT, MLP, 

AdaBoost, NB, logistic 

regression, RF 

 

SVM Avg Acc: 97% 

 

 

 

 
Figure. 3:  proposed system model 

 

4.1. Dataset 

 

In the proposed Implementation, two distinct datasets were used: dataset (1) and dataset (2). Dataset (1) 

is for constructing and refining the model's parameters and it was split into training and testing set with 

a ratio of 70:30 and dataset (2) is for measuring the performance of the model on samples that mimic 

real-world APKs. The dataset is formed from malicious obfuscated and benign obfuscated and non-

obfuscated samples. Malicious obfuscated samples are taken from [17], a new dataset that contains 

malware samples varies from 2018 to 2020 that were obfuscated using ObfuscAPK tool [11]. On the 

other hand, benign dataset was obtained by crawling F-Droid [18] and obfuscating the samples using 

ObfuscAPK. ObfuscAPK is an open-source tool that offers several obfuscation techniques options. 

When obfuscating benign samples, a mix of Trivial, Rename and Encryption options were used as 

shown below: 

 

"python -m obfuscapk.cli -o ClassRename -o FieldRename -o MethodRename -o ConstStringEncryption -

o ResStringEncryption -o Reflection -o Rebuild -o NewAlignment -o NewSignature 'APK FILES' -p" 
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Table 3: Descriptive Information about Dataset 
 

 Dataset (1) Dataset (2) 

Obfuscated Benign 1801  - 

Obfuscated Malicious 200 801 

Non-Obfuscated Benign 1999 199 

 

4.2. Preprocessing 

 

Given an APK file, the features are extracted from classes.dex file. The features used in Androdet are 

used alongside with adding feature selection techniques relying on feature importance [15]. Feature 

importance is a technique were each feature is given a score based on its importance and these scores 

help in sorting the features. Figure 4 shows the rank of each feature from Androdet features for 

detecting both renaming identifier and string encryption.  

 

 
 

Figure. 4: Feature Importance Rank 

 

As shown in Figure 4, the main features that affect the accuracy of the model are the average count of 

equals ("="), average count of existence of slashes ("/"), the number of fields with length 2 and 3, and 

Avg sum of repetitive characters which are appear more than once in a string. Upon evaluation, some 

features were found to have a detrimental effect on the model's accuracy. Consequently, these features 

were prudently removed to improve the overall performance and predictive capabilities of the model as 

Num_Cls_L1, Num_Cls_L2, Num_Cls_L3. 

 

4.3. Evaluation Metrics 

 

Evaluation metrics provide insights into how well the model is performing and help in comparing 

different models. Confusion matrix is a fundamental tool used in the evaluation of the performance of 

machine learning model as it assesses the accuracy and reliability of the model. Confusion matrix have 

four main components: 
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▫ True positive [TP]: The number of obfuscated APKs that were correctly predicted to be 

obfuscated 
▫ True negative [TN]: The number non-obfuscated APKs that were correctly predicted to be non-

obfuscated 
▫ False positive [FP]: The number of obfuscated APKs but were wrongly predicted to be non-

obfuscated. 
▫ False negative [FN]: The number of non-obfuscated APKs but were wrongly predicted to be 

obfuscated.  
Above components help in calculating evaluation matrix and to find accuracy, F1 score, precision and 

recall which can be calculated as follows: 

 

▫                        Accuracy: 
𝑇𝑝+𝑇𝑛

𝑇𝑝+𝐹𝑝+𝑇𝑛+𝐹𝑛
 

▫ Precision: 
𝑇𝑝

𝑇𝑝+𝐹𝑝
                                                    Recall: 

𝑇𝑝

𝑇𝑝+𝐹𝑛
 

▫                               F1 score: 2 x 
Pr𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

Pr𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

4.4. Results  

 

This section compares the accuracy of different machine learning algorithms and presents the evaluation 

results to figure out the best performing algorithm to detect Android obfuscation. Four algorithms were 

chosen in this comparison: Random Forest (RF), Support Vector Machines (SVM), k-Nearest 

Neighbour (KNN) twice, first the N is set to 1 to makes the model more sensitive to local patterns and 

then the N is set to 5 for more stability and generalizable predictions. and Decision Tree (DT). Random 

Forest was the one with the best results as shown in Table 4. 

 
Table 4: Machine Learning Models results with Dataset (1) 

 

Model Accuracy   F1 Precision Recall 

RF  99.5% 99.5% 99.8% 99.1% 

KNN (k=5) 

KNN(k=1) 

96.1% 

95.8% 

96.1% 

95.8% 

94.9% 

94.8% 

97.3% 

96.7% 

SVM 98.9% 98.9% 99.0% 98.8% 

DT 98.2% 98.2% 98.2% 98.2% 

 

To further analyze the results, the best model shown in Table 4, which is Random Forest, was evaluated 

against the different features explained in section 4.1. The experiment started by using only the most 

significant Feature, adding one feature at a time to see the best accuracy with the least number of 

features. As shown in Figure 5, the performance of the model stopped improving after adding the first 8 

features together which means that other features can be removed to improve model performance and 

for better model interpretability. Table 5 shows the corresponding features that appear as numbers in 

Figure 5. 
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Figure. 5:  RF Performance against Different Number of Features based on Feature Importance  

 
Table 5: Features 

 

No. Feature No Feature 

1 Avg_Num_Equals 10 Avg_Wordsize_Flds 

2 Avg_Num_Slashes 11 Avg_Distances_Cls 

3 Num_Flds_L2 12 Num_Mtds_L3 

4 Num_Flds_L3 13 Avg_Wordsize 

5 Avg_Sum_RepChars 14 Avg_Length 

6 Num_Flds_L1 15 Avg_Entropy 

7 Avg_Distances_Flds 16 Avg_Wordsize_Mtds 

8 Avg_Num_Dashes 17 Avg_Distances_Mtds 

9 Avg_Num_Pluses 18 Avg_Wordsize_Cls 

 

Furthermore, after training and testing, the model was further evaluated using an additional dataset 

(Dataset (2)). Importantly, this dataset was entirely separate from the one used for training and testing 

our model. This separation between training and evaluation datasets is essential to ensure that our 

model's performance is tested on unseen files. Dataset (2) was tested with Random Forest model and 

gives an accuracy of 96.4%. 

 

5. Conclusion and Future Work  

 

Obfuscation is a very important technique that helps developers in protecting their Android applications 

and preventing them from any illegitimate usage. It also helps malware attackers in hiding their 

malicious code from being detected. Therefore, detecting obfuscation has become inevitable. This paper 

proposed several machine learning models that were used in detecting obfuscation and compare 
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between those models. We used Random Forest, SVM, KNN and DT. And random forest was the one 

with accuracy 99.5%. Not all types of obfuscation were covered in this paper. 

This work paves the way in the process of detecting android malware as detecting obfuscation will help 

analysts in choosing the right technique in detecting malware and finding out that static analysis would 

be useless in those cases where APK is obfuscated.  
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