
IJICIS, Vol.24, No.1, 1-11

DOI:10.21608/ijicis.2024.250295.1308

*Corresponding Author: Hend Faisal

Faculty of Computer and Information Sciences, Ain Shams University, Egyptian Computer Emergency and Readiness Team

(EG-CERT), National Telecom, Regulatory Authority (NTRA), Egypt

Email address: hend.faisal@cis.asu.edu.eg

International Journal of Intelligent

Computing and Information Sciences

ARTIFICIAL INTELLIGENCE BASED ALGORITHM FOR DETECTING

ANDROID OBFUSCATED APPLICATIONS

Hend Faisal*

Faculty of Computer and Information Sciences, Ain Shams

University,Egyptian Computer Emergency and Readiness

Team (EG-CERT), National Telecom,

Regulatory Authority (NTRA), Egypt

hend.faisal@cis.asu.edu.eg

Hanan Hindy

Faculty of Computer and Information Sciences, Ain Shams

University,

Cairo, Egypt

hanan.hindy@cis.asu.edu.eg

Samir Gaber

Faculty of Engineering in Helwan, Helwan University

Egyptian Computer Emergency and Readiness Team (EG-

CERT), National Telecom,

Regulatory Authority (NTRA), Egypt

samir_abdelgawad@eng-helwan.edu.eg

Abdel-Badeeh M. Salem

Faculty of Computer and Information Sciences, Ain Shams

University,

Cairo Egypt

absalem@cis.asu.edu.eg

Received 2023-11-22; Revised 2023-11-22; Accepted 2024-03-05
Abstract: As technology continues to advance, so does the landscape of Android; based on its open-

source nature which renders it vulnerable to various risks. Therefore, the developers need to deploy and

employ obfuscation techniques in their newly developed android applications. In this paper, we present

an investigation into Android obfuscation detection. Our work encompasses a comprehensive

examination of Android obfuscation techniques and an exploration of their intersection with machine

learning. We conducted extensive experiments involving various machine learning models to detect

obfuscation. The results show that Random Forest is the one with the most promising results with

accuracy 99.5% in detecting Android Obfuscation. The used dataset comprises both malicious and

benign samples, where different obfuscation techniques have been applied.

Keywords: Android Obfuscation, Machine Learning, Artificial Intelligence, Information Security

1. Introduction

Android holds significant importance in the market as it is the most used platform according to

Worldwide Market Share statistics [1]. As a result of the nature of Android operating system which is

based on open-source development, Android application developers suffer from how easy their

applications could be reverse-engineered, and thus, their code being accessible and readable. This

https://ijicis.journals.ekb.eg/

file:///C:/Users/Engai/Desktop/marwa/diploma/Journal/copy/hend.faisal@cis.asu.edu.eg
hend.faisal@cis.asu.edu.eg
mailto:hanan.hindy@cis.asu.edu.eg
mailto:samir_abdelgawad@eng-helwan.edu.eg

2 Hend Faisal et al.

accessibility makes the applications vulnerable to code theft from individuals to build their own

applications based on others’ work. Also, this allows malicious actors to copy and rewrite an application

customized for their own malicious purposes. As a result, the need for a technique to safeguard sensitive

data became critical, and code obfuscation is one way of doing it. Code Obfuscation [2] helps in doing

this by offering a layer of protection against reverse engineering and code analysis.

Code obfuscation is a technique used in making the source code of an application more difficult to be

analyzed and reduce the readability of the code. Besides its benefits, obfuscation is a two-edged sword.

For legitimate software, it provides an additional layer of security to help in preventing unauthorized

access to their critical components. On the other hand, for malicious software, it poses challenges for

security professionals in detecting malware by using automated malware detection tools as it hides its

malicious activities [20]. The majority of the current research proposed detection approaches that focus

on detecting each obfuscation technique separately.

In this work, we proposed a framework for detecting android obfuscation with more than one technique.

A comparative analysis is conducted to evaluate and contrast the performance of various machine

learning algorithms in order to ascertain which one offers the most effective means of detecting the

different obfuscation techniques. Furthermore, the feature importance is evaluated for the obfuscation

detection problem. The proposed model efficiency is assessed with two different datasets described in

detail in the Dataset section.

We organized our paper as follows: The introduction is presented in section 1, background and

explaining the nature of Android Application Package (APK) and how source code is compiled to an

APK, how obfuscation is done in android and various obfuscation tools in the market in section 2.

Section 3 reviews related work in the field. Section 4 outlines our research methodology, including data

preprocessing, dataset, evaluation metrics, and results. Finally, the paper concludes in Section 5,

summarizing the findings and pointing to future directions in the realm of Android obfuscation

detection.

2. Background

Understanding the internal components of APK [3] is crucial for understanding how reverse engineering

is easy for Android applications if they are not obfuscated. APK files are considered a zip file that

encapsulates different components as 1) Android Manifest, which contains essential information about

the application including its version, permissions, activities and more. 2) META-INF, which includes

application signature and integrity-related information. 3) classes.dex, a file that contains the compiled

Dalvik bytecode of the app. 4) Resource folder, which contains non-compiled resources that the

application needs. 5) Assets, which include application assets if needed like storing data, configuration

files, HTML files, or other resources that the application might need. 6) Lib directory, that holds

compiled native libraries for various CPU architectures. The compilation process from source code to

the Dalvik Virtual Machine involves several steps in the Android application development workflow.

As shown in Figure 1, the Source code is writing the code of the Android application in one of its

supported languages (i.e., Java or Kotlin).

Bytecode is considered an intermediary component between high-level source code and runtime

execution where the source code is compiled into java bytecode.

ARTIFICIAL INTELLIGENCE BASED ALGORITHM FOR DETECTING ANDROID OBFUSCATED

APPLICATIONS 3

Dalvik Bytecode is an optimized representation of Android code and stored in .dex format.
Dalvik Virtual Machine is responsible for executing Dalvik bytecode on android devices.

Figure. 1: Compilation steps of Android Application

As a reverse engineer, it is straightforward to decompile an Android application and retrieve all

of those components and easily decompile Dalvik bytecode to easily human-readable source code by

various tools such as APKtool [4], Dex2jar [5] and more. Thus, understanding all the functionalities of

the app. Here came the importance of using obfuscation.

2.1. Obfuscation in Android

Obfuscation helps to prevent reverse-engineering attempts by making it harder for attackers to

understand the source code of the app, control flow and its resource structure. There exist multiple

obfuscation techniques.

2.1.1 Obfuscation Techniques

In this section, the different Android Obfuscation techniques are outlined:

• Identifier Renaming: involves changing the names of classes, fields and methods of source

code to be less descriptive so make it harder for attackers to comprehend the application's logic.

Figure. 2.a: Code snippet before Identifier Renaming

4 Hend Faisal et al.

Figure. 2.b: Code snippet after Identifier Renaming

• String/ Class Encryption: In this technique, the developers encrypt strings and/or classes instead

of saving strings as plain text and decrypt them at runtime. For example,

Text before encryption: "Hello, World!"

Text after encryption: "5$K7#p2!ZaP&L9*"

• Control Flow Obfuscation: This technique involves modifying the flow of the code thus making

it more complex and harder to follow. Examples of code flow obfuscation include [19]:

▪ Junk code insertion which involves injecting redundant and irrelevant code into the

original codebase to obfuscate the logic of the application.

▪ Reflection involves accessing dangerous APIs of the Android Framework to employ

dynamic code execution to invoke APIs at running time.

▪ Call indirection which hides the direct calls to main functions to obscure the actual flow of

the application.

▪ GoTo/ Nop instructions insertion that disrupts the natural flow of the program either by

adding jumps or not instructions.

▪ Reorder code blocks involves altering the sequence of code sections within the application

• Resource Encryption: which encrypts critical resources and assets to prevent unauthorized

access.

2.1.2 Obfuscation Tools

There exists a number of obfuscation tools that have been developed lately which made obfuscation

easy to be used. Table 1 lists the top five used obfuscation tools and their proposed features.

Table 1: Popular Android Obfuscation Tools

Obfuscator Features Opensource

ProGuard [6]

Identifier Renaming

APK Shrink

Bytecode Optimization

DexGuard [7]

Identifier Renaming APK Shrink

Bytecode Optimization Control Flow Obfuscation

 Class/ String/ Resource Encryption

 ✗

Allatori [8]

Identifier Renaming

Control Flow Obfuscation String Encryption

 ✗

DashO [9]

Identifier Renaming

Control Flow Obfuscation String/ Resource Encryption

 ✗

ObfuscAPK [10] Identifier Renaming

Control Flow Obfuscation String/ Class/ Resource Encryption

3. Related Work

In the literature, there are several research papers working on the Android obfuscation problem. Jiang

et.al. [11] proposed a function-level obfuscation detection method based on a hybrid Neural Network

model; Graph Convolutional Network (GCN) and Long Short-Term Memory (LSTM) (GCN-LSTM).

Their proposed architecture comprised both x86 architecture and Android applications. The authors

ARTIFICIAL INTELLIGENCE BASED ALGORITHM FOR DETECTING ANDROID OBFUSCATED

APPLICATIONS 5

used the same approach for both architectures, but each one separately due to the their difference. They

extracted 15 features using IDAPython plugin provided by IDAPro and built multiple Machine

Learning model including Adaboost, GaussianNaiveBayes, GradientBoosting, etc. Their findings

showed that the one with the best accuracy was GCN-LSTM with accuracy 98.94%.
Park et.al. [12] targeted the problem from another point of view. The authors found out that

most of the researchers identify obfuscation at application-level and they claim that this approach is

limited and inaccurate. Therefore, they started to employ the idea of class level obfuscation as they

decompile the APK, then extracted the classes from classes.dex and vectorized the decompiled code to

output vector which they fed into four different machine learning classifiers and detect four obfuscation

techniques. Extra Trees algorithm was the best upon others used algorithms with average accuracy

75.9%

Mirzaei et.al. [13] presented Androdet, an obfuscation detector implemented to detect three

types of obfuscation renaming identifier, string encryption, and control flow obfuscation. They

extracted 30 features from the key identifiers of Dalvik bytecode from each APK including word size,

entropy, number of nodes and more. The authors of Androdet relied on a modular online learning

algorithm to detect those three types, each separately, and their accuracies were 92.02%, 81.41% and

68.32% respectively. If a given APK is obfuscated with more than one of those algorithms, then the

accuracy drops to 80.66%

Conti et.al. [15] relied on extending Androdet to improve detection accuracy and also added two

new detection approaches. The first one is using Natural Language Processing to identify obfuscation

from the code and the second is transforming the code into image and classify then using image

recognition. In their paper, they tried each approach separately then tried to combine different

approaches to figure out the one with best accuracy their approach reaches F1 score with 98.5%.

Wang et.al. [16] proposed a different methodology as it identifies which obfuscator is used, not

which technique is used as proposed in the literature. The authors collected and built their dataset from

F-droid and started to obfuscate those files using different obfuscators as ProGuard, dashO, Allatori,

Legu and Bangcle. They used different ML models and SVM achieved the highest accuracy of 97%.

Table 2 provides a descriptive summary about previous work done in the field of android obfuscation

detection using Machine Learning. The proposed work in [11] reaches the best accuracy among all of

them which used Graph Convolutional Networks with Long Short-Term Memory (GCN-LSTM). This

is a hybrid neural network architecture that combines two powerful techniques in the deep learning

world While the field of Android obfuscation has seen significant development over the years, there

remains a notable gap in the research landscape. Specifically, there is a limited number of studies

addressing the challenges posed when multiple obfuscation techniques are combined together in the

same sample. Next section will delve deeply into the methodology employed in our research on

Android obfuscation. It will provide a comprehensive insight into the processes, techniques, and

approaches used in the proposed method.

4. System Model and Evaluation

This section presents our proposed approach in detecting Android obfuscation with different

obfuscation techniques. The proposed approach aims to detect android obfuscation that is obfuscated by

more than one algorithm, mainly tested on renaming identifier and string encryption techniques both

6 Hend Faisal et al.

together as they are the main obfuscation techniques used in most cases. Figure 3 shows the proposed

system model and will be discussed in details below.

Table 2: Summary of Related Work on Android Obfuscation.

Where: IR: Identifier Renaming, SE: String Encryption, CE: Class Encryption, CFG: Control Flow Graph, Acc: Accuracy.

Year Obfuscator Obfuscation Techniques Approach Measure

2022 [15] obfuscAPK IR, SE, Reflection, CE NLP, Code to Image

CNN, different ML models

Acc: 98.5%

 2021 [11] obfuscAPK IR, SE, CFG GCN-LSTM F1: 98.95%

2019 [13] Allatori IR, SE, CFG SVM, MOA IR Acc: 98.5%

SE Acc: 81.41%

CFG Acc: 68.32%

Overall Acc: 80.66%

2019 [12] ProGuard

 dashO

DexProtector

DexGuard

IR, SE, Reflection, CFG Random Forest, AdaBoost,

Extra Trees, Linear SVM

Extra Trees:

 IR Acc: 70.1%

SE Acc: 77%

CFG Acc: 80%

Ref Acc: 76.3%

Avg Acc: 75.9%

2017 [16] ProGuard, dashO,

Allatori, Legu,

Bangcle

IR, SE, CFG package

modification

SVM, KNN, DT, MLP,

AdaBoost, NB, logistic

regression, RF

SVM Avg Acc: 97%

Figure. 3: proposed system model

4.1. Dataset

In the proposed Implementation, two distinct datasets were used: dataset (1) and dataset (2). Dataset (1)

is for constructing and refining the model's parameters and it was split into training and testing set with

a ratio of 70:30 and dataset (2) is for measuring the performance of the model on samples that mimic

real-world APKs. The dataset is formed from malicious obfuscated and benign obfuscated and non-

obfuscated samples. Malicious obfuscated samples are taken from [17], a new dataset that contains

malware samples varies from 2018 to 2020 that were obfuscated using ObfuscAPK tool [11]. On the

other hand, benign dataset was obtained by crawling F-Droid [18] and obfuscating the samples using

ObfuscAPK. ObfuscAPK is an open-source tool that offers several obfuscation techniques options.

When obfuscating benign samples, a mix of Trivial, Rename and Encryption options were used as

shown below:

"python -m obfuscapk.cli -o ClassRename -o FieldRename -o MethodRename -o ConstStringEncryption -

o ResStringEncryption -o Reflection -o Rebuild -o NewAlignment -o NewSignature 'APK FILES' -p"

ARTIFICIAL INTELLIGENCE BASED ALGORITHM FOR DETECTING ANDROID OBFUSCATED

APPLICATIONS 7

Table 3: Descriptive Information about Dataset

 Dataset (1) Dataset (2)

Obfuscated Benign 1801 -

Obfuscated Malicious 200 801

Non-Obfuscated Benign 1999 199

4.2. Preprocessing

Given an APK file, the features are extracted from classes.dex file. The features used in Androdet are

used alongside with adding feature selection techniques relying on feature importance [15]. Feature

importance is a technique were each feature is given a score based on its importance and these scores

help in sorting the features. Figure 4 shows the rank of each feature from Androdet features for

detecting both renaming identifier and string encryption.

Figure. 4: Feature Importance Rank

As shown in Figure 4, the main features that affect the accuracy of the model are the average count of

equals ("="), average count of existence of slashes ("/"), the number of fields with length 2 and 3, and

Avg sum of repetitive characters which are appear more than once in a string. Upon evaluation, some

features were found to have a detrimental effect on the model's accuracy. Consequently, these features

were prudently removed to improve the overall performance and predictive capabilities of the model as

Num_Cls_L1, Num_Cls_L2, Num_Cls_L3.

4.3. Evaluation Metrics

Evaluation metrics provide insights into how well the model is performing and help in comparing

different models. Confusion matrix is a fundamental tool used in the evaluation of the performance of

machine learning model as it assesses the accuracy and reliability of the model. Confusion matrix have

four main components:

8 Hend Faisal et al.

▫ True positive [TP]: The number of obfuscated APKs that were correctly predicted to be

obfuscated
▫ True negative [TN]: The number non-obfuscated APKs that were correctly predicted to be non-

obfuscated
▫ False positive [FP]: The number of obfuscated APKs but were wrongly predicted to be non-

obfuscated.
▫ False negative [FN]: The number of non-obfuscated APKs but were wrongly predicted to be

obfuscated.
Above components help in calculating evaluation matrix and to find accuracy, F1 score, precision and

recall which can be calculated as follows:

▫ Accuracy:
𝑇𝑝+𝑇𝑛

𝑇𝑝+𝐹𝑝+𝑇𝑛+𝐹𝑛

▫ Precision:
𝑇𝑝

𝑇𝑝+𝐹𝑝
 Recall:

𝑇𝑝

𝑇𝑝+𝐹𝑛

▫ F1 score: 2 x
Pr𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

Pr𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

4.4. Results

This section compares the accuracy of different machine learning algorithms and presents the evaluation

results to figure out the best performing algorithm to detect Android obfuscation. Four algorithms were

chosen in this comparison: Random Forest (RF), Support Vector Machines (SVM), k-Nearest

Neighbour (KNN) twice, first the N is set to 1 to makes the model more sensitive to local patterns and

then the N is set to 5 for more stability and generalizable predictions. and Decision Tree (DT). Random

Forest was the one with the best results as shown in Table 4.

Table 4: Machine Learning Models results with Dataset (1)

Model Accuracy F1 Precision Recall

RF 99.5% 99.5% 99.8% 99.1%

KNN (k=5)

KNN(k=1)

96.1%

95.8%

96.1%

95.8%

94.9%

94.8%

97.3%

96.7%

SVM 98.9% 98.9% 99.0% 98.8%

DT 98.2% 98.2% 98.2% 98.2%

To further analyze the results, the best model shown in Table 4, which is Random Forest, was evaluated

against the different features explained in section 4.1. The experiment started by using only the most

significant Feature, adding one feature at a time to see the best accuracy with the least number of

features. As shown in Figure 5, the performance of the model stopped improving after adding the first 8

features together which means that other features can be removed to improve model performance and

for better model interpretability. Table 5 shows the corresponding features that appear as numbers in

Figure 5.

ARTIFICIAL INTELLIGENCE BASED ALGORITHM FOR DETECTING ANDROID OBFUSCATED

APPLICATIONS 9

Figure. 5: RF Performance against Different Number of Features based on Feature Importance

Table 5: Features

No. Feature No Feature

1 Avg_Num_Equals 10 Avg_Wordsize_Flds

2 Avg_Num_Slashes 11 Avg_Distances_Cls

3 Num_Flds_L2 12 Num_Mtds_L3

4 Num_Flds_L3 13 Avg_Wordsize

5 Avg_Sum_RepChars 14 Avg_Length

6 Num_Flds_L1 15 Avg_Entropy

7 Avg_Distances_Flds 16 Avg_Wordsize_Mtds

8 Avg_Num_Dashes 17 Avg_Distances_Mtds

9 Avg_Num_Pluses 18 Avg_Wordsize_Cls

Furthermore, after training and testing, the model was further evaluated using an additional dataset

(Dataset (2)). Importantly, this dataset was entirely separate from the one used for training and testing

our model. This separation between training and evaluation datasets is essential to ensure that our

model's performance is tested on unseen files. Dataset (2) was tested with Random Forest model and

gives an accuracy of 96.4%.

5. Conclusion and Future Work

Obfuscation is a very important technique that helps developers in protecting their Android applications

and preventing them from any illegitimate usage. It also helps malware attackers in hiding their

malicious code from being detected. Therefore, detecting obfuscation has become inevitable. This paper

proposed several machine learning models that were used in detecting obfuscation and compare

10 Hend Faisal et al.

between those models. We used Random Forest, SVM, KNN and DT. And random forest was the one

with accuracy 99.5%. Not all types of obfuscation were covered in this paper.

This work paves the way in the process of detecting android malware as detecting obfuscation will help

analysts in choosing the right technique in detecting malware and finding out that static analysis would

be useless in those cases where APK is obfuscated.

References

1. S. G. Stats, “Operating system market share worldwide,” 2023. Available:

https://gs.statcounter.com/os-market-share Accessed: (16 June 2023).

2. Balakrishnan, Arini, and Chloe Schulze. "Code obfuscation literature survey." CS701 Construction

of compilers 19 (2005): 31.

3. Arnatovich, Yauhen & Wang, Lipo & Ngo, Ngoc & Soh, Charlie. (2018). A Comparison of Android

Reverse Engineering Tools via Program Behaviors Validation Based on Intermediate Languages

Transformation. IEEE Access. PP. 1-1. 10.1109/ACCESS.2018.2808340.

4. Apktool. https://ibotpeaches.github.io/Apktool. (Accessed 10 September 2023).

5. Dex2jar. https://bitbucket.org/pxb1988/dex2jar. (Accessed 10 September 2023).

6. Proguard. https://www.guardsquare.com/proguard. (Accessed 3 July 2023).

7. Dexguard https://www.guardsquare.com/dexguard. (Accessed 3 July 2023).

8. Allatori. https://allatori.com/overview.html. (Accessed 3 July 2023).

9. DashO. https://www.preemptive.com/products/dasho/. (Accessed 3 July 2023).

10. S. Aonzo, G. C. Georgiu, L. Verderame, and A. Merlo, “Obfuscapk: An open-source black-box

obfuscation tool for android apps,” SoftwareX, vol. 11, p. 100403, 2020.

11. S. Jiang, Y. Hong, C. Fu, Y. Qian, and L. Han, “Function-level obfuscation detection method based

on graph convolutional networks,” Journal of Information Security and Applications, vol. 61, p.

102953, 2021

12. M. Park, G. You, S. Cho, M. Park, and S. Han, “A framework for identifying obfuscation

techniques applied to android apps using machine learning,” J. Wirel. Mob. Networks Ubiquitous

Comput. Dependable Appl., vol. 10, no. 4, pp. 22–30,2019.

13. O. Mirzaei, J. de Fuentes, J. Tapiador, and L. Gonzalez-Manzano, “Androdet: An adaptive android

obfuscation detector,” Future Generation Computer Systems, vol. 90, pp. 240–261, 2019.

14. Zien, Alexander, et al. "The feature importance ranking measure." Machine Learning and

Knowledge Discovery in Databases: European Conference, ECML PKDD 2009, Bled, Slovenia,

September 7-11, 2009, Proceedings, Part II 20. Springer Berlin Heidelberg, 2009.

15. M. Conti, V. P., and A. Vitella, “Obfuscation detection in android applications using deep learning,”

Journal of Information Security and Applications, vol. 70, p. 103311, 2022.

16. Y. Wang and A. Rountev, “Who changed you? obfuscator identification for android,” in 2017

IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems

(MOBILESoft), pp. 154–164, IEEE, 2017.

17. S. Kumar, D. Mishra, B. Panda, and S. K. Shukla, “Androobfs: time-tagged obfuscated android

malware dataset with family information,” in Proceedings of the 19th International Conference on

Mining Software Repositories, pp. 454–458, 2022.

18. F-Droid. https://f-droid.org/. (Accessed 14 September 2023).

19. Chen, Haibo, et al. "Control flow obfuscation with information flow tracking." Proceedings of the

42nd Annual IEEE/ACM International Symposium on Microarchitecture. 2009.

https://gs.statcounter.com/os-market-share
https://allatori.com/overview.html

ARTIFICIAL INTELLIGENCE BASED ALGORITHM FOR DETECTING ANDROID OBFUSCATED

APPLICATIONS 11

20. Faisal, H., Hindy, H., Gaber, S. and Salem, A.B., 2022, December. ASurvey ON ARTIFICIAL

INTELLIGENCE TECHNIQUES FOR MALWARE DETECTION. In CS & IT Conference

Proceedings (Vol. 12, No. 23). CS & IT Conference Proceedings.

