
IJICIS, Vol.23, No.3, 95-113

DOI: 10.21608/ijicis.2023.217108.1279

*Corresponding Author: Sherin M. Moussa

Information Systems Department, Faculty of Computer and Information Science, Ain Shams University, Cairo 11566, Egypt

Laboratoire Interdisciplinaire de l'Université Française d'Egypte (UFEID Lab), Université Francaise d’Egypte, Cairo 11837,

Egypt

Email address: sherinmoussa@cis.asu.edu.eg, sherin.moussa@ufe.edu.eg

International Journal of Intelligent

Computing and Information Sciences

A RECOMMENDER SYSTEM FOR FAULT RECOVERY STRATEGIES IN

WEB SERVICES COMPOSITION TESTING

Roaa A. ElGhondakly

Department of Information

Systems ,

Faculty of Computer and

Information Sciences, Ain Shams

University,

Cairo 11566, Egypt

roaa.ahmed@cis.asu.edu.eg

Sherin M. Moussa*

Department of Information Systems ,

Faculty of Computer and Information

Sciences, Ain Shams University,

Cairo 11566, Egypt

Laboratoire Interdisciplinaire de l'Université

Française d'Egypte (UFEID Lab), Université

Francaise d’Egypte, Cairo 11837, Egypt

sherinmoussa@cis.asu.edu.eg,

sherin.moussa@ufe.edu.eg

Nagwa Badr

Department of Information Systems,

Faculty of Computer and

Information Sciences, Ain Shams

University

Cairo 11566, Egypt

nagwabadr@cis.asu.edu.eg

Received 2023-06-12; Revised 2023-06-12; Accepted 2023-07-12

Abstract: Faults recovery has recently emerged as an important aspect of web service composition

(WSC) testing, as it aims to minimize the impact of faults on system functionality through restoring the

system's operation after a fault has occurred. However, most of the existing recommendation systems

(RSs) tend to recommend frequently used services, which lack diversity and face inaccuracies due to

incomplete or biased historical data. In addition, the focus of the existing RSs is on proposing fault

handling models rather than recommending the best recovery strategy for handling faults, with most

being code-based, thus not suitable for WSCs. Accordingly, due to the opaque nature of WSCs with

hidden source code, model-based recovery methods are preferred. In this paper, the Fault Recovery

Strategies RS for WSCs (F2RS-WSC) is proposed to recommend the best recovery strategy for handling

emerging faults in the WSCs paradigm. The proposed system is a model-based system that recommends

the best strategy for recovering faulty paths generated from service dependency graphs (SDGs) based

on the faults` types, severity levels, faults` location, as well as the time at which faults may occur. The

experimental results show that the time consumed by F2RS-WSC to recommend the optimum recovery

strategy represents less than 3% of the SDG parsing time and 4% of the path validation time. In

addition, its superior performance assures its accuracy and efficiency. Thus, it achieves accuracy levels

between 70% and 88 % among multiple datasets. Moreover, its average precision, recall and f-measure

values are 0.85,0.81 and 0.86 respectively.

Keywords: Fault recovery strategies, fault handling, service-oriented computing, web service

composition, service dependency graph, recommender system, model-based applications.

https://ijicis.journals.ekb.eg/

mailto:nagwabadr@cis.asu.edu.eg

96 Sherin M. Moussa et al.

1. Introduction

Due to the rapid expansion of various distributed computing models, service-oriented computing (SOC)

has become increasingly intricate and has gained recognition as an emerging trend. SOC models are

constructed by assembling a collection of loosely-coupled distributed services, forming web service

compositions [1,2]. These SOC models encompass software reuse, striving to sustain superior levels of

performance, accuracy, and quality. However, since they are built upon pre-existing services, these

systems encounter various challenges. These challenges include interdependencies among services [2],

complexities in integration [3], and ensuring quality of service (Q oS) metrics such as response time,

throughput, and availability [2,4]. Integration and dependency challenges are prominent concerns in

SOC paradigms and web service composition systems [2,5], which can lead to performance degradation

[6] and the occurrence of faults [1,7]. Predicting faulty components and facilitating fault recovery in

web services testing has become increasingly challenging. Web services testing is primarily conducted

as black box testing, as the internal code of web services is concealed, and only input and output

parameters are accessible [8]. Consequently, leveraging model-based testing proves to be more effective

and reliable, particularly for testing web service compositions. Therefore, the development of model-

based testing approaches for testing the integration and dependencies of web service compositions

becomes crucial. In this regard, employing service dependency graphs (SDGs) for testing web service

compositions offers an efficient and reliable approach. SDGs are based on capturing the dependencies

between services, rather than solely representing the services in a graphical form, distinguishing it from

other types of graphs [2,5].

SOC testing has been conducted from various perspectives, including fault tolerance encompassing fault

detection, recovery, prediction, injection, and localization [1]. However, this study will primarily focus

on fault tolerance and recovery. Effective and successful fault recovery methods in the early stages

significantly enhance the reliability, availability, and quality of the System Under Test (SUT) [9,10].

When faults are present in the SUT, the system may either terminate execution or behave differently

than expected [9,10]. Consequently, fault recovery methods aim to assist the system in overcoming fault

occurrences by either terminating the execution process or aborting and leaving the system in a safe

state [9,10]. Fault recovery encompasses various strategies for addressing errors, including retry,

substitution, compensation, roll-back, replication, and checkpointing [9,10]. Among these strategies,

retry, replication, substitution, and checkpointing lead to the termination of the execution process, while

roll-back and compensation strategies allow the execution to proceed by aborting the faulty service and

ensuring the system's safety [10–13]. In the retry strategy, the system attempts to invoke the faulty

service again, but if the fault persists, it switches to another recovery strategy [9,10]. Substitution

involves replacing the faulty service with a non-faulty one, similar to compensation [14–16].

Replication entails replacing the faulty service with a backup replica once a fault occurs [11] .

Checkpointing involves creating checkpoints after each system change, allowing a task to restart from

the most recent checkpoint instead of the beginning in case of failure [12,13]. In the checkpointing

strategy, the faulty service is substituted with another service that adheres to quality of service (QoS)

constraints [12,17].

However, the majority of current recommendation systems tend to suggest commonly used services for

recovering faulty services in a given composition, resulting in a lack of diversity [18–20]. These

systems also encounter inaccuracies caused by incomplete or biased historical data [18,19]. Moreover,

A RECOMMENDER SYSTEM FOR FAULT RECOVERY STRATEGIES IN WEB SERVICES COMPOSITION

TESTING 97

existing recommender systems primarily concentrate on suggesting fault handling models instead of

recommending the optimal recovery strategy for fault management [19,20]. Most of these systems are

code-based, making them unsuitable for web service composition [18–20]. Consequently, given the

opaque nature of web service compositions that involve hidden source code, model-based recovery

methods are preferred.

This paper introduces the Fault Recovery Strategies Recommender System for web service

compositions (F2RS-WSC), which aims to recommend the optimal recovery strategy for addressing

emerging faults in the web service compositions paradigm. The proposed system operates based on a

model-based approach and provides recommendations for recovering faulty paths derived from service

dependency graphs (SDGs), to maintain dependencies between services, thereby enhancing the

reliability and efficiency of the composition [2,5], taking into account factors such as fault types,

severity levels, fault locations, and the timing of potential faults. The key contributions of this study can

be summarized as follows:

1. Introducing the Fault Recovery Strategies Recommender System for web service compositions

(F2RS-WSC) approach designed specifically for testing model-based web service compositions.

This innovative approach effectively resolves the common problem of limited access to web

service source code, a concern frequently encountered in similar research studies.

2. F2RS-WSC aims to recommend the optimal recovery strategy for addressing emerging faults in

the web service compositions paradigm considering factors such as fault types, severity levels,

fault locations, and the timing of potential faults. Instead of choosing random strategies that

might not suits the type of error, severity level, fault location …etc.

3. F2RS-WSC utilizes Service Dependency Graphs (SDGs) to operate, ensuring the retention of

integration and dependency relationships among services within a web service composition.

This sets it apart from conventional model-based studies that often employ more abstract

connections, lacking the specificity and granularity provided by SDGs.

2. Related Works

Fault recovery plays a crucial role in testing web service composition, enabling the creation of a more

resilient and smoothly functioning system that can promptly recover from encountered faults [1,21]

This, in turn, enhances availability, scalability, and composition quality, while minimizing costs and

efforts under expected operational conditions [22,23]. Numerous studies have addressed fault tolerance

and recovery strategies for Service-Oriented Computing (SOC) systems [1,13,14,21,22,24,25].

However, the majority of these studies focus on proposing recovery approaches for substituting the

faulty service rather than considering any other recovery strategy. Thus, in [15] authors proposed a fault

tolerance approach which is code-based not model-based for web service compositions through solely

recovering the faulty service and performing QoS ranking techniques for selecting the best service

suitable for recovery. However, Code availability in SOC paradigms is a major challenge. In addition,

the service recovery strategy lacks integration assurance. In [16], the recovery approach applies Single

service (SSR) and multiple service reconfiguration (MSR) to select a service substitution while

searching for a nearby solution, in addition to Harmony Search (HS) algorithm to speed up the recovery

process. However, it only considers substitution strategy and ignores other recovery strategies.

98 Sherin M. Moussa et al.

Another code-based recovery approach was proposed in [11] by applying ranking algorithms as

PageRank based Service Component Ranking (PSCR) and HITS based Service Component Ranking

(HSCR) Algorithms. Yet, it was a code-based approach which encounters the nature of web service

concerning code availability. While in [9] the authors adopt the retry strategy through proposing self-

healing approach based on causes of faults. However, it is a code-based approach that contradicts the

nature of web services concerning source code availability. In [14], a model-based approach was

proposed for examining fault tolerance in web service composition. It adopted petri nets as a formal

model to model services and study the interactions between them for achieving optimum fault tolerance

model. It is a 3-phase utilizing QoS-aware parameters of services through invocation, synchronization,

and exception. When the resources of services increase, the proposed approach's reliability is affected

due to the incompetence of this mechanism. In [17] the authors proposed a recovery approach based on

checkpoint rollback strategies. Thus, it provides dynamic load balancing for cloud computing using ant

colony optimization algorithm resulting in minimizing search time and boosting performance of

network. However, the results from the model simulations are not presented. Other studies adopted

checkpointing strategy as in [12,13,17] while some approaches were code-based however web services

nature doesn`t guarantee source code availability. However, some recommender systems were proposed

as [26,27] for fault recovery in web service composition. However, in [27] the authors proposed a

recommender system that apply substitution strategy only for substituting the faulty service through

selecting another one based on their location in server and some QoS attributes. While, in [26] the

proposed recommender system is able to recommend the best recovery strategy among 3 fixed

strategies according to the execution time. However, most of related studies and recommender systems

focus only on one recovery strategy, which is substitution strategy. In addition, they consider QoS

parameters in selecting the substituting service. Meanwhile, most of them ignore important factors for

choosing the optimum recovery strategy or method as type of occurred fault, its severity level, its

location, and time at which fault occurs. Moreover, the proposed recovery approaches were code-based

which comply with the nature of web service as code availability is not guaranteed which will affect the

performance and accuracy of their approaches.

The adopted recovery strategies in (F2RS-WSC) approach are retry, substitution, roll-back, replication,

and checkpointing [11,16]. An accompanying comprehensive depiction of each strategy, along with

prior relevant research exploring it as follows:

1. Retry : The system attempts to execute the faulty service again, but if the fault persists, it

switches to another recovery strategy [9,10].

2. Substitution : This strategy tend to replace the faulty service or faulty composition with a non-

faulty one [14–16].

3. Roll-back: in this strategy, the system will roll-back to the last stable state before fault occurs

[17].

4. Replication : in this strategy, a backup replica will replace the faulty service once a fault occurs

[11].

5. Checkpointing: it involves creating checkpoints after each system change, allowing a task to

restart from the most recent checkpoint instead of the beginning in case of failure [12,13,17].

As shown in Table 1, a comparison between multiple fault tolerance approaches in terms of adopted

recovery strategy, whether it is code-based or model-based and the criteria under which the recovery

A RECOMMENDER SYSTEM FOR FAULT RECOVERY STRATEGIES IN WEB SERVICES COMPOSITION

TESTING 99

strategy is selected. From these criteria, type of fault, level of severity, and the timing of the fault

occurrence, location of fault and QoS parameters. Despite the existence of multiple related studies in

fault recovery and fault tolerance paradigm, most of these studies adopt substitution strategy by

replacing the faulty service with a non-faulty one. In addition, they neglect important criteria as type of

fault, level of severity, and the timing of the fault occurrence and location of fault while choosing the

recovery strategy [14,27]. Moreover, The primary focus was on source code metrics, but their use is

limited to specific programming languages and not suitable for opaque nature of services in SOC

systems [12,14,26,27]. Accordingly, a model-based recovery strategy recommender system is needed to

detect the optimum recovery strategy based on fault aspects rather than applying random recovery

strategy.

Table 1 Summarized Comparison between Proposed F2RS-WSC and Related Studies

Ref#
Code-Based/

Model-Based
Recovery Strategy Strategy Selection Criteria

Recommender

System

[15] Code-Based Substitution QoS parameters No

[16] Code-Based Substitution - No

[11] Code-Based Replication - No

[9] Code-Based Retry Causes of Faults No

[14] Model-Based Substitution QoS parameters No

[17] Code-Based Roll-Back and Checkpointing -
No

[12] Code-Based Checkpointing - No

[27] Model-Based Substitution Fault Location and QoS Parameters
Yes

[26] Code-Based Roll-back, Retry, Substitution

and Replication

Execution state when a failure

occurs, context-information, QoS

Parameters
Yes

F2RS-

WSC

Model-Based Retry, Substitution, Replication,

Roll-back and checkpointing

Fault Type, Fault Severity Level

Fault Location,

Time at which fault occurs
Yes

3. The Proposed Fault Recovery Strategies Recommender System for web service compositions

(F2RS-WSC) Approach:

In this section, the proposed Fault Recovery Strategies Recommender System for web service

compositions (F2RS-WSC) approach was introduced. The F2RS-WSC approach is a model-based

recovery recommender system. Thus, The model-based techniques convey web services nature with

hidden source code [1–3,28]. The F2RS-WSC approach aims to recommend the optimal recovery

strategy for addressing emerging faults in the web service compositions paradigm. The proposed system

operates based on a model-based approach and provides recommendations for recovering faulty paths

derived from service dependency graphs (SDGs), to maintain dependencies between services, thereby

enhancing the reliability and efficiency of the composition [2,5,28], taking into account faults multiple

100 Sherin M. Moussa et al.

aspects of faults such as fault types, severity levels, fault locations, and the timing of potential faults.

Figure 1 represents the system Architecture of the proposed F2RS-WSC approach.

As shown in Figure 1, the proposed F2RS-WSC architecture consists of three main modules: Web

Service Composition Preprocessing, Faulty Path Detection and FRS-WSC Recommendation. It accepts

SDGs as an input. It examines the web service composition to determine whether it is faulty or not. It

also specifies different aspects of faults such as fault types, severity levels, fault locations, and the

timing of potential faults. Hence, for faulty edges, a recovery strategy is recommended based on the

detected faults` aspects.

The Fault Recovery Strategies Recommender System for Web

Service Compositions (F2RS-WSC)

Web Service Composition Preprocessing

Services

Dependency

Graph (SDG)

Service Dependency Graph Parsing

Edge ValidationService Validation

FRS-WSC Recommendation

Fault Type
Estimation

Fault
Severity

Level
Estimation

Fault
Occurrence

Time
Analysis

Fault
Location
Analysis

WSC Fault Recovery Strategy Recommendation

Faulty Paths Detection

Recommendations per

Fault

Figure. 1: The Proposed F2RS-WSC Approach System Architecture

For a comprehensive explanation of the F2RS-WSC architecture, an illustrative example is deployed

that adopts the service repository in [2] and its corresponding SDG generated by the Mutual

A RECOMMENDER SYSTEM FOR FAULT RECOVERY STRATEGIES IN WEB SERVICES COMPOSITION

TESTING 101

Information-based Services Dependency (MISD) model in [5]. Figure 2 represents the generated SDG

by the MISD model [5]. This SDG differ than any SDG as it is constructed based on the Web Service

Mutual Information (WSMI) value between services in addition to other criteria that guarantee an

accurate dependency level between each two services rather than parameters matching as in other SDGs

in [2,28,29]. As represented by Figure 2, the SDG is a layered graph consisting of 9 services with their

corresponding input/output parameters. Each layer contains a set of services that have input parameters

matching the output parameters of services in the previous layers, while their output parameters match

the input parameters of the services in the following layer. In addition, the weights on the edges

represent the WSMI value calculated by the MISD model in [5]. In the following sub-sections, a

detailed description for the three main modules is presented.

Figure. 2: The illustrative SDG example used by MISD model in [5]

3.1.Web Service Composition Preprocessing

This module acts as a foundation stage for the F2RS-WSC approach, in which it receives the SDG as an

input and validates the given web service composition. The following sub-sections illustrate how this

module works.

3.1.1. Service Dependency Graph Parsing:

In the F2RS-WSC approach any SDG can be used as an input. This sub-module is responsible for

parsing the SDG, and all its data, as nodes, edges, and layers, are stored in a database table. Following

our illustrative example in Figure 2, the SDG constructed by the MISD model in [5] is given as an input

to the F2RS-WSC approach .

3.1.2. Service Validation:

This sub-module is responsible for validating each service in the web service composition path under

test. F2RS-WSC splits the composition under test into edges and searches the SDG for source and target

102 Sherin M. Moussa et al.

services, forming the edges to confirm their existence. Hence, if at least one service does not exist in the

SDG, the whole composition is considered faulty. Following the illustrative example in Figure 2,

assume 𝒑𝒂𝒕𝒉 𝟏: 𝑺𝟐, 𝑺𝟏, 𝑺𝟑, 𝑺𝟖 is given to F2RS-WSC to validate this composition. First, the F2RS-

WSC splits it into 3 edges: 𝑬𝟏: "𝑺𝟐, 𝑺𝟏", 𝑬𝟐: "𝑺𝟏, 𝑺𝟑" 𝒂𝒏𝒅 𝑬𝟑: "𝑺𝟑, 𝑺𝟖". It then searches the SDG

looking for all services in each edge. Since all services "𝑺𝟐", "𝑺𝟏", "𝑺𝟑 " 𝒂𝒏𝒅 "𝑺𝟖" exist in the graph,

F2RS-WSC continues to the next step “Edge Validation”. However, to validate 𝒑𝒂𝒕𝒉 𝟐: 𝑺𝟐, 𝑿, 𝑺𝟑,

F2RS-WSC splits it into 2 edges; 𝑬𝟏: "𝑺𝟐, 𝑿" 𝒂𝒏𝒅 𝑬𝟐: "𝑿, 𝑺𝟑", in which service “𝑿” in 𝑬𝟏 does not

exist in the SDG. Therefore, the validation process terminates immediately, declaring that this

composition is faulty and moves to “FRS-WSC Recommendation” to start recommending the optimum

recovery strategy for every faulty edge based on fault types, severity level…etc.

3.1.3. Edge Validation :

In this sub-module, the web service composition under test is split into edges. Each edge is examined

whether it is faulty or non-faulty. Thus, F2RS-WSC validates separate services through validating the

source and target nodes and confirms their existence in the SDG as well validating the edge connecting

these two services. However, the source and target service validation do not guarantee the validation of

edges between them. Thus, both nodes might exist in the SDG under test with no edge between them,

which makes this edge faulty. Thus, following our illustrative example, assume providing F2RS-WSC

approach 𝒑𝒂𝒕𝒉 𝟏 𝒂𝒔: 𝑺𝟐, 𝑺𝟏, 𝑺𝟑, 𝑺𝟖 for validation. F2RS-WSC splits its edges and validates each edge

separately. So, the edge between “𝑺𝟐, 𝑺𝟏” is checked; if it exists, the edge is then valid and marked as

non-faulty edge; otherwise, if it does not exist or one of its services` nodes, it is marked as a faulty edge.

Hence, for path1, all edges are non-faulty. Therefore, F2RS-WSC declares path 1 as non-faulty. On the

other hand, given 𝒑𝒂𝒕𝒉 𝟐: 𝑺𝟐, 𝑿, 𝑺𝟑, the edge between “𝑺𝟐, 𝑿” is declared as a faulty edge, because

node “𝑿” does not exist in the SDG as well as the edge.

3.2.Faulty Path Detection

In this module, a faulty path is detected after validating all services and edges forming this path. Hence,

after performing service validation and edge validation processes. The F2RS-WSC will declare if the

path is faulty or non-faulty based on existence of any faults either on services level or edges level.

Thus, following our illustrative example, given the two paths 𝒑𝒂𝒕𝒉 𝟏 𝒂𝒔: 𝑺𝟐, 𝑺𝟏, 𝑺𝟑, 𝑺𝟖 and

𝒑𝒂𝒕𝒉 𝟐: 𝑺𝟐, 𝑿, 𝑺𝟑 the F2RS-WSC declares path 2 as faulty and considers a recommendation for a

recovery strategy for it in the following sub-modules.

3.3.FRS-WSC Recommendation

This module is the core of the proposed F2RS-WSC recommender system. Thus, it illustrates how the

recommender system works showing the factors adopted to recommending the optimum recovery

strategy. Hence, F2RS-WSC provides recommendations for the optimum recovery strategy needed to

handle faults occurred per edge in web service composition. After declaring faulty composition, the

F2RS-WSC approach builds its recommendations based on type of fault, level of severity, and the

timing of the fault occurrence, fault’s locations, and the time at which the faults occur.

3.3.1. Fault Type Estimation:

A RECOMMENDER SYSTEM FOR FAULT RECOVERY STRATEGIES IN WEB SERVICES COMPOSITION

TESTING 103

The proposed F2RS-WSC approach focuses on identifying the faults in the model-based service-

oriented architectures (SOA). This is because the source code of these architectures is not available and

are therefore treated as black box components[1,7]. Therefore, the proposed approach is more suitable

for handling the faults caused in the SOA systems, which are based on the cause of fault [1,7]. It helps

to identify the fault types and their causes, thereby making it easier for the developers to fix the

issues[1,7]. The utilization of this approach can have advantages in the enhancement of model-based

SOA systems' performance. In the F2RS-WSC approach, five categories of faults are taken into

account, including:

1. Right-First-Time failure: which materializes when the initial service in the sequence is either

unavailable or flawed .

2. Control Flow error: which arises when an endless loop or the backtracking to a wrong state or

place is detected .

3. Dependency/integration fault: which is associated with inaccuracies in the connection between

services .

4. Availability fault: which verifies whether a service exists in the specified repository or not.

5. Test path delay fault: which indicates any delay in the tested sequence, such as having a loop or

an indirect route.

3.3.2. Fault Severity Level Estimation:

The severity level of predicted faults is determined through the proposed F2RS-WSC approach, which

expresses the potential impact on the overall system. Severity levels may range from high (which can

lead to system failure), to low (which have a minor impact on system functionality) [30,31]. The F2RS-

WSC approach maps severity levels with various predicted fault types, including Blocker, Critical

Error, Major Severity Level, Minor Error, and Low Severity Level.

1. Blockers are bugs that block further testing, causing system crashes in specific environments,

which is suitable for the “Right-First-Time failures.”

2. Critical Errors represent security issues that could lead to system shutdown, data loss, or other

severe damage, which is suitable for the “Control Flow error .”

3. Major severity levels negatively affect large portions of the system and manifest in certain types

of testing, which is suitable for the “Dependency / integration fault .”

4. Minor Errors do not impact the basic functions of the system or testing process, which is suitable

for the “Availability fault.”

5. Low Severity Levels represent bugs with limited impacts found during user interface testing,

which is suitable for the “Test path delay fault”.

3.3.3. Fault Location Analysis:

The function of this sub-module is to detect faults in a test path by analyzing the Service Dependency

Graph (SDG) for any presence of faulty services or edges. The process of identifying faults begins with

analyzing the test path, dividing it into segments or edges consisting of two connected services, which

are then examined for any issues. If a fault is identified on an edge, its location is determined by F2RS-

WSC approach, indicating the specific edge where the fault exists. In summary, the fault's location

pinpoints the edge that contains a faulty service.

104 Sherin M. Moussa et al.

3.3.4. Fault Occurrence Time Analysis:

This sub-module is responsible for measuring the time at which faults occur. Thus, measuring the time

of fault occurrence indicates the specific moment or period when a fault, error, or failure happens in a

system or process. It is a crucial metric in determining the root cause of the fault and developing

effective solutions to prevent similar issues from happening in the future. In other words, it provides a

timestamp for when a fault occurs, which can be used by F2RS-WSC approach to track the fault and

determine the optimum recovery strategy that is eligible to handle it taking into consideration other

aspects as fault type, severity level and fault location.

3.3.5. WSC Fault Recovery Strategy Recommendation:

This sub-module is the heart of the F2RS-WSC recommender system where the recommendations of

optimum recovery strategies take place. Thus, the decision is made by F2RS-WSC to select the best

recovery strategy based on Fault type, fault level of severity, fault location and time at which fault

occurs. Hence, a detailed demonstration of all these aspects is given in the previous sub-section.

Accordingly, F2RS-WSC recommender system maps recovery strategy with faults aspects as follows:

1- Retry: this strategy is eligible to handle “Availability Fault” with “Major Severity Level”.

2- Substitution: this strategy is best used to handle “Dependency / integration fault” with “Minor

Severity Level”, “Availability Fault” with “Major Severity Level” and “Right-First-Time failure”

with “Blocker Level”. However, this strategy is optimum for the stated fault types, but it also can be

used to handle other faults.

3- Roll-back: this strategy is eligible to handle “Dependency / integration fault” with “Minor Severity

Level” and “Test path delay fault” with “Low Severity Level”.

4- Replication: this strategy is eligible to handle “Availability Fault” with “Major Severity Level”.

5- Checkpointing: this strategy is eligible to handle “Control Flow error” with “Critical Severity

Level”.

Table 2 represents each fault type and severity level with its optimum corresponding recovery strategy

determined by F2RS-WSC recommender system.

Table 2 F2RS-WSC recovery strategy Mapping

Recovery Strategy Fault Type Severity Level

Retry Availability Fault Major Severity Level

Substitution Dependency / integration fault, Right-First-Time

failure, and Availability Fault

Minor Severity Level, Blocker Level and

Major Severity Level

Roll-Back Test path delay fault and Dependency / integration

fault

Low Severity Level and Minor Severity

Level

Replication Availability Fault Major Severity Level

Checkpointing Control Flow error Critical Severity Level

4. The Experimental evaluation and results

A RECOMMENDER SYSTEM FOR FAULT RECOVERY STRATEGIES IN WEB SERVICES COMPOSITION

TESTING 105

An overview of the F2RS-WSC approach experimentation results and evaluation metrics is presented in

this section. Thus, evaluation is conducted in terms of time metric as well as performance evaluation

metrics (precision, recall, f-measure, and accuracy). F2RS-WSC is developed using python on PyCharm

platform. The experimentation was carried out on an Intel(R) Core (TM) i-8550U, 2GHz processor and

16GB RAM. To ensure accuracy and efficiency of results, experiments were carried out multiple times

on various datasets. The following sub-sections describe in detail the used dataset, the evaluation

metrics, and the associated achieved results.

4.1.Datasets

This subsection provides a detailed description of the datasets that were utilized for evaluating the

F2RS-WSC approach. The description includes the size, origin, and brief information about each

dataset. The "Services Dependency Graphs for Web Services Composition Modeling Dataset" [32] was

used, which consists of multiple SDGs generated by the MISD model [5] for four public services

datasets. The MISD model was employed to address the challenges faced by other SDGs, while also

maintaining the accuracy of the testing process and quality of composition modeling. The layered graph

structure of the MISD model simplifies the search process, with each layer containing a selection of

services from the repository based on their actual dependencies and WSMI-based metric. The WSMI-

based metric assesses actual service dependencies by analyzing various criteria such as input/output

parameter matching, parameter count, and the total number of edges utilized by each web service,

regardless of any user request. In the F2RS-WSC approach, the WSMI-based SDG is used to create test

paths for textual services. The dataset sizes are provided, including the number of services (nodes of

SDG) and the number of edges included in each SDG within the dataset file as follows:

1. The dataset described in [2] is Gabrel's web service repository consisting of nine services with

input and output parameters. It also includes the SDG generated by the MISD model used as an

input for the F2RS-WSC approach.

2. The dataset brought forward by [33] is the Pablo Rodríguez Mier Dataset with information on five

service repositories ranging from 1,000 to 9,000 web services. Details for each repository include

the original web services with input and output parameters, a generated repository with random

parameters, and generated SDGs using the MISD model, which serves as the input for the F2RS-

WSC approach.

3. The WSC08 dataset is for the web service challenge held in 2008 [34]. It comprises eight service

repositories with original web services, input/output parameters, ranging from 158 to 8,119

services per repository, and the generated SDGs by the MISD model, serving as the input for the

F2RS-WSC approach.

4. The WSC09 dataset is for the web service challenge held in 2009 [35]. It consists of five service

repositories containing original web services with their corresponding input and output

parameters, varying between 527 and 15,211 services per repository, and the generated SDGs by

the MISD model used as the input for the F2RS-WSC approach.

4.2.Time Metrics

106 Sherin M. Moussa et al.

In this sub-section time metric is evaluated through conducting experiments on F2RS-WSC approach

among all datasets described previously in section 4.1. F2RS-WSC used this time metric to measure the

recovery strategy recommendation time, in addition to the SDG parsing time and the paths validation

time. Thus, the recovery strategy recommendation time represents the time needed by F2RS-WSC

approach to recommend the optimum recovery strategy per fault. While the SDG parsing time

represents the time consumed by F2RS-WSC approach to parse the given SDG and store all its data in a

database table. In addition, for the path validation time it measures the amount of time required to

validate a composition and determines if it is faulty or non-faulty after inspecting all its edges and

services. Moreover, F2RS-WSC performed a comparison between the 3-time measurements.

The experiments were conducted on all datasets and results were analyzed as shown in Figure 3 and

Figure 4. Thus, it was observed that the recovery strategy recommendation time is very minor in

comparison with the SDG parsing time and path validation time. Hence, parsing time is the highest

among the 3-time measurements as it represents the time consumed by F2RS-WSC to parse SDG and

store its data. Accordingly, it is directly proportional to the size of repository thus, as the number of

services in a given repository increases the parsing time increases as well. However, from the

advantages of F2RS-WSC that the SDG parsing process is only performed once and can be used an

infinite number of times for validating infinite paths as well as recommending recovery strategy for

infinite number of faults. Meanwhile, the SDG parsing time is much higher than that of the

composition/path validation time with about 93% approximately. Thus, the path validation time is a

search process on the parsed SDG generated by the MISD model, which is a very well-organized

layered graph based on the WSMI value [5].

As for the recovery strategy recommendation time, it is much lower than that of the SDG parsing time

by an average of 97.7%. While the recovery strategy recommendation time represents an average of 4%

of the path validation time, which makes it lower than that of the path validation time by an average of

96%. Figure 3 presents the 3-time measurements; SDG parsing time, path validation time and Recovery

strategy recommendation time of the proposed F2RS-WSC approach conducted on multiple datasets,

where the x-axis represents the datasets, and the y-axis represents the 3-time measurements consumed

by F2RS-WSC approach in milliseconds. Figure 4 represents the average of the three-time metrics

(SDG parsing time, path validation time and Recovery strategy recommendation time) among all

datasets, where the x-axis is the 3-time metrics, while y-axis represents the time consumed in

milliseconds.

A RECOMMENDER SYSTEM FOR FAULT RECOVERY STRATEGIES IN WEB SERVICES COMPOSITION

TESTING 107

Figure. 3: The F2RS-WSC Time Metrics Evaluation

Figure. 4: The average time consumed by the proposed F2RS-WSC approach among all datasets

4.3.Performance Metrics

In this section, the evaluation method used by the F2RS-WSC approach is presented through

performance metrics. These metrics are employed to assess the accuracy, reliability, and quality of the

F2RS-WSC approach [1]. The performance metrics involve precision, recall, f-measure, and accuracy.

Table 3 provides a concise explanation of these metrics along with the formulas that are applied for

measuring them based on the confusion matrix, which is presented in Table 4 [36]. The accuracy metric

is used to validate F2RS-WSC among the different datasets as per the formula presented in Table 3

based on the Confusion matrix presented in Table 4 [36]. The calculation involves determining the

proportion of accurate predictions made in relation to the overall number of predictions [7]. Table 5

represents the results of the F2RS-WSC approach performance metrics among all the datasets.

Table 3. The performance metrics used by F2RS-WSC approach for evaluation

Metric Meaning Formula

Accuracy
This illustrates the percentage of accurate predictions

in relation to the overall number of predictions made .

𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵

Recall
This statement denotes the accurate identification of

faults that match the actual faults.

𝑻𝑷

𝑻𝑷 + 𝑭𝑵

0

50000

100000

150000

G
ab

re
l

W
SC

0
8

_1

W
SC

0
8

_2

W
SC

0
8

_3

W
SC

0
8

_4

W
SC

0
8

_5

W
SC

0
8

_6

W
SC

0
8

_7

W
SC

0
8

_8

W
SC

0
9

_1

W
SC

0
9

_2

W
SC

0
9

_3

W
SC

0
9

_4

W
SC

0
9

_5

P
ab

lo
_1

P
ab

lo
_2

P
ab

lo
_3

P
ab

lo
_4

P
ab

lo
_5Ti
m

e
in

 m
ill

is
ec

o
n

d
s

Datasets

Parsing SDG Time Path Validation Time Recovery Strategy RecommendationTime

43659.76

2992.458
121.31

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

Parsing SDG Time Path Validation Time Recovery Strategy
RecommendationTime

Ti
m

e
in

 M
ill

is
ec

o
n

d
s

Time Metric

108 Sherin M. Moussa et al.

Precision
It shows the ratio of accurately identified faults to the

overall number of classified faults

𝑭𝑷

𝑭𝑷 + 𝑻𝑵

F-measure It is the harmonic mean of precision and recall 𝟐 ∗
(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍)

(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍)

Table 4. The Confusion matrix

 No (Predicted) Yes (Predicted)

No (Actual) True negatives (TN) False negatives (FP)

Yes (Actual) False negatives (FN) True positives (TP)

The F2RS-WSC approach achieves an accuracy level of 70% - 88%. In addition, the correlation

between the size of the dataset and the measurement of accuracy is directly proportional; as the dataset

size increases the accuracy level increases. Figure.5 shows accuracy measurement of F2RS-WSC

approach among all datasets.

Table 5 The Performance metrics for the F2RS-WSC approach

Dataset Accuracy Recall Precision F-measure

Gabrel Example 70 % 0.7 0.81 0.84

WSC_08_1 75.01 % 0.75 0.89 0.85

WSC_08_2 75.5 % 0.75 0.88 0.88

WSC_08_3 77.6 % 0.77 0.82 0.81

WSC_08_4 79 % 0.79 0.87 0.82

WSC_08_5 82.6 % 0.82 0.89 0.86

WSC_08_6 80.7 % 0.80 0.88 0.89

WSC_08_7 83.2 % 0.83 0.83 0.82

WSC_08_8 84.7% 0.84 0.86 0.87

WSC_09_1 75 % 0.75 0.88 0.88

WSC_09_2 86 % 0.86 0.85 0.81

WSC_09_3 86.4 % 0.86 0.80 0.87

WSC_09_4 87 % 0.87 0.82 0.81

WSC_09_5 88 % 0.88 0.9 0.83

Pablo_1 82.7 % 0.82 0.88 0.89

Pablo_2 83.1 % 0.83 0.81 0.83

Pablo_3 83.9 % 0.83 0.87 0.86

Pablo_4 87.4 % 0.87 0.88 0.88

Pablo_5 87.8 % 0.88 0.85 0.99

A RECOMMENDER SYSTEM FOR FAULT RECOVERY STRATEGIES IN WEB SERVICES COMPOSITION

TESTING 109

Figure. 5: The accuracy measurement of F2RS-WSC approach among all datasets

Figure. 6: The performance metric values of F2RS-WSC approach among all datasets

Figure. 7: The average of performance metrics of F2RS-WSC approach among all datasets

While other metrics such as Precision, Recall, and F-measure are commonly used to assess the quality

of software [7]. The Precision metric determines the percentage of accurately identified outcomes,

whereas Recall evaluates the proportion of correctly identified outcomes out of all possible relevant

outcomes. Furthermore, the F-measure combines both Precision and Recall into a unified measurement

that captures these attributes [7]. For precision, recall and f-measures the F2RS-WSC approach achieves

0%

20%

40%

60%

80%

100%

G
ab

re
l E

xa
m

p
le

W
SC

_
0

8
_1

W
SC

_
0

8
_2

W
SC

_
0

8
_3

W
SC

_
0

8
_4

W
SC

_
0

8
_5

W
SC

_
0

8
_6

W
SC

_
0

8
_7

W
SC

_
0

8
_8

W
SC

_
0

9
_1

W
SC

_
0

9
_2

W
SC

_
0

9
_3

W
SC

_
0

9
_4

W
SC

_
0

9
_5

P
ab

lo
_1

P
ab

lo
_2

P
ab

lo
_3

P
ab

lo
_4

P
ab

lo
_5

A
cc

u
ra

cy

Datasets

0
0.2
0.4
0.6
0.8

1
1.2

G
ab

re
l…

W
SC

_
0

8
_1

W
SC

_
0

8
_2

W
SC

_
0

8
_3

W
SC

_
0

8
_4

W
SC

_
0

8
_5

W
SC

_
0

8
_6

W
SC

_
0

8
_7

W
SC

_
0

8
_8

W
SC

_
0

9
_1

W
SC

_
0

9
_2

W
SC

_
0

9
_3

W
SC

_
0

9
_4

W
SC

_
0

9
_5

P
ab

lo
_1

P
ab

lo
_2

P
ab

lo
_3

P
ab

lo
_4

P
ab

lo
_5

P
er

fo
rm

an
ce

 M
et

ri
cs

Datasets

Recall Precision F-measure

0.81

0.85

0.86

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

Recall Precision F-measure

A
ve

ra
ge

 P
er

fo
rm

n
ac

e
M

et
ri

cs

Datasets

110 Sherin M. Moussa et al.

averages of 0.85, 0.81 and 0.86 respectively. Thus, Figure 6 represents performance metrics results of

the F2RS-WSC approach for all the dataset files, whereas Figure 7 presents the average performance

measurements among all datasets.

5. Discussion

This section discusses the advantages and unresolved challenges of utilizing the proposed approach

F2RS-WSC. The outcomes from assessing the experimental metrics and comparing them with existing

approaches indicate the numerous benefits of using the F2RS-WSC approach. However, there are still

some outstanding issues that we need to address, which will be discussed below. As per the conducted

experiments and results, the proposed F2RS-WSC approach:

1. Is a model-based approach. Thus, being language-independent makes it more homogeneous with

web service compositions, due to the opaque nature with hidden source code.

2. Is a recommender system for fault recovery able to recommend the optimum recovery strategy

suitable for the existing fault based on multiple aspects of the fault as fault type, fault severity

level, fault’s location and time at which fault occurs.

3. Accepts any SDG rather than simple directed graph, as an input as in most of the related studies,

to maintain the integration and dependency considerations.

4. Is inspected on multiple datasets of different sizes to assure its scalability, via various evaluation

metrics to evaluate its efficiency and effectiveness.

As an on-going process of continuous development, we are working on the following open issues to

include in our proposed F2RS-WSC as follows. F2RS-WSC approach should be extended to:

1. Develop a model for handling the tackled faults based on the recommended optimum recovery

strategies.

2. Examine multiple models, such as trees, petri nets…etc., and compare their performance to

SDGs.

3. Address more fault perspectives, such as introducing faults deliberately through injection.

6. Conclusion

The burgeoning in service-oriented computing (SOC) paradigms lead the way for more convoluted

systems. Hence, as the complexity of compositions increases and integration issues arise while

combining services, the occurrence of faults tends to rise. Therefore, there is a crucial need to develop

remedies for fault recovery to uphold the reliability and resilience of web service compositions.

However, the majority of existing studies tend to use substitution recovery strategy to recover faulty

services in a given composition. In addition, others apply random recovery strategies without taking

into consideration the occurred fault aspects as fault`s type, severity level, fault`s location…etc. In this

paper, the Fault Recovery Strategies Recommender System for web service compositions (F2RS-WSC)

is proposed to recommend the best recovery strategy for handling emerging faults in the web service

compositions paradigm. The proposed system is a model-based system that recommends the best

strategy for recovering faulty paths generated from service dependency graphs based on the faults`

types, severity levels, faults` location, as well as the time at which faults may occur. The model-based

approaches suit the blind nature of web service compositions with hidden source code.

A RECOMMENDER SYSTEM FOR FAULT RECOVERY STRATEGIES IN WEB SERVICES COMPOSITION

TESTING 111

The experimental results obtained to evaluate the proposed F2RS-WSC approach on a variant set of

datasets with different sizes considered two main evaluation metrics: time and performance. The results

indicate that the time consumed for recovery strategy recommendation in the proposed F2RS-WSC

represents less than 3% of the time needed to parse the input SDG. While it represents 4% of path

validation time. The path validation time is very minor compared to the parsing time as it represents an

average of 6% of the SDG parsing time since the layered SDG minimizes the search-space that directly

affects the time. Regarding the performance metric, the applied metrics were accuracy, precision, recall

and f-measure. The F2RS-WSC shows an average accuracy between 70% and 88%, in which the

accuracy level increases as the size of dataset increases. In addition, the precision, recall and f-measure

also gave promising results of averages 0.85,0.81 and 0.86 respectively. Thus, performance metrics

indicated that the proposed F2RS-WSC approach overall performance is high which assures the

accuracy and efficiency of recommendations. As future work, we plan to develop a comprehensive fault

handling model including all fault perspective as fault injection, fault prediction, fault localization and

fault recovery. In addition, we plan to compare performance when using different models, i.e., petri-

nets, trees...etc. as an input to F2RS-WSC to boost its performance.

References

[1] R. Elghondakly, S. Moussa, N. Badr, Handling Faults in Service Oriented Computing : A

Comprehensive Study, Int. Conf. Comput. Sci. Its Appl. Springer, Cham, 2020. (2020) 947–959.

doi:10.1007/978-3-030-58811-3.

[2] V. Gabrel, M. Manouvrier, K. Moreau, C. Murat, QoS-aware automatic syntactic service

composition problem: Complexity and resolution, Futur. Gener. Comput. Syst. 80 (2018) 311–

321. doi:10.1016/j.future.2017.04.009.

[3] S.A. Raza Kazmi, A. Qasim, A. Khalid, R. Assad, M. Shahbaz, Formal modeling and verification

of cloud‐based web service composition, Concurr. Comput. Pract. Exp. (2019) e5249.

doi:10.1002/cpe.5249.

[4] A. Barkat, Framework for web service composition based on QoS in the multi cloud

environment, Int. J. Inf. Technol. (2021). doi:10.1007/s41870-020-00564-z.

[5] R.A. Elghondakly, S.M. Moussa, N.L. Badr, Mutual Information-based Modeling for Services

Dependency, IEEE Trans. Serv. Comput. (2022) 1–18. doi:10.1109/TSC.2022.3207232.

[6] C. Jatoth, G.R. Gangadharan, U. Fiore, R. Buyya, QoS-aware Big service composition using

MapReduce based evolutionary algorithm with guided mutation, Futur. Gener. Comput. Syst. 86

(2018) 1008–1018. doi:10.1016/j.future.2017.07.042.

[7] R. Elghondakly, S.M. Moussa, N. Badr, Service-oriented model-based fault prediction and

localization for service compositions testing using deep learning techniques, Appl. Soft Comput.

143 (2023) 110430. doi:10.1016/j.asoc.2023.110430.

[8] R.A. Elghondakly, S.M. Moussa, N.L. Badr, The DSW Model: An Efficient Approach for Single

Web Services Modeling, 2021 Tenth Int. Conf. Intell. Comput. Inf. Syst. (ICICIS), 2021. (2021)

500–505. doi:10.1109/ICICIS52592.2021.9694204.

[9] K.S.M. Chan, J. Bishop, J. Steyn, L. Baresi, A Fault Taxonomy for Web Service Composition,

Int. Conf. Serv. Comput. Springer, Berlin, Heidelberg, 2009. (2009).

doi:https://doi.org/10.1007/978-3-540-93851-4_36.

[10] X. Chen, J.-H. Jiang, A method of virtual machine placement for faulttolerant cloud applications,

Intell. Autom. Soft Comput. 22 (2016) 587–597.

112 Sherin M. Moussa et al.

[11] L. Liu, J. Shang, Fault Tolerance for Web Service based on Component Importance in Service

Networks, Proc. Fifth Int. Conf. Network, Commun. Comput. (Pp. 103-109). (2016) 103–109.

doi:10.1145/3033288.3033328.

[12] J. Liu, J. Zhou, Software Rejuvenation based Fault Tolerance Scheme for Cloud Applications,

2015 IEEE 8th Int. Conf. Cloud Comput. (Pp. 1115-1118). IEEE. (2015) 1115–1118.

doi:10.1109/CLOUD.2015.164.

[13] M. Vargas-Santiago, S.E.P. Hernández, L.A. Morales-Rosales, H.H. Kacem, Survey on Web

Services Fault Tolerance Approaches Based on Checkpointing Mechanisms, J. Softw., 12(7),

507-525. 12 (2017) 507–525. doi:10.17706/jsw.12.7.507-525.

[14] Y. Chen, L., Fan, G., & Liu, A formal method to model and analyse QoS-aware fault tolerant

service composition, Int. J. Comput. Sci. Eng. 12 (2016).

[15] R. Gupta, R. Kamal, U. Suman, A QoS-supported approach using fault detection and tolerance

for achieving reliability in dynamic orchestration of web services, Int. J. Inf. Technol. (2017).

doi:10.1007/s41870-017-0066-z.

[16] H. Fekih, S. Mtibaa, S. Bouamama, The dynamic approach for fault-tolerance service

reconfiguration composition based on multi-level VCSOP web service composition based a on

multi-level VCSOP, Procedia Comput. Sci. 159 (2019) 1527–1536.

doi:10.1016/j.procs.2019.09.323.

[17] A. Kaur, G. Kaur, Resource scheduling based on load balancing with fault tolerance in cloud

computing, Int. Adv. Res. J. Sci. Eng. Technol.,. 5 (2018) 59–66.

[18] Thakur, R., K. Verma, Fault-tolerant web service composition using a hybrid approach of

checkpointing and recommender system, Int. J. Grid High Perform. Comput. 10 (2018) 13–27.

[19] Reddy, C. V., A. P Shukla, A critique of recommender systems in web service composition.,

2017 Fourth Int. Conf. Parallel, Distrib. Grid Comput. , IEEE. (2017) 336–341.

[20] A.A. Adebiyi, L.S. Aro, A.A. Onashoga, S. A., Akinsanya, O.J. Oyelade, Hybrid state space

planning and recommendation system for web service composition in cloud environment, Futur.

Gener. Comput. Syst. 91 (2019) 59–72.

[21] P. Veeresh, R.P. Sam, C.S. Bindu, Reliable fault tolerance system for service composition in

mobile Ad Hoc network, Int. J. Electr. Comput. Eng. Vol. 9 (2019) 2523–2533.

doi:10.11591/ijece.v9i4.pp2523-2533.

[22] R. Angarita, M. Rukoz, Y. Cardinale, Modeling dynamic recovery strategy for composite web

services execution, World Wide Web, Springer. (2016) 89–109. doi:10.1007/s11280-015-0329-1.

[23] T. Laleh, J. Paquet, S. Mokhov, Y. Yan, Constraint verification failure recovery in web service

composition, Futur. Gener. Comput. Syst. 89 (2018) 387–401. doi:10.1016/j.future.2018.06.037.

[24] G.P. Bhandari, R. Gupta, Extended Fault Taxonomy of SOA-Based Systems, 25 (2017) 237–257.

doi:10.20532/cit.2017.1003569.

[25] S. Kumar, D.S. Rana, S.C. Dimri, Fault Tolerance and Load Balancing algorithm in Cloud

Computing : A survey, Int. J. Adv. Res. Comput. Commun. Eng. 4(7), 92-96. (2015) 92–96.

doi:10.17148/IJARCCE.2015.4720.

[26] R. Angarita, M. Rukoz, Reliable Composite Web Services Execution : Towards a Dynamic

Recovery Decision, Electron. Notes Theor. Comput. Sci. 302 (2014) 5–28.

doi:10.1016/j.entcs.2014.01.018.

[27] D. Pandey, R. Shankar, R. Pathak, An adaptive approach for dynamic recovery decisions in web

service composition using space based QoS factor., Int. J. Web Serv. Comput. 6 (2015).

[28] S.L. Fan, Y. Bin Yang, X.X. Wang, Efficient web service composition via knapsack-variant

algorithm, Lect. Notes Comput. Sci. Artif. Intell. Bioinformatics). 10969 LNCS (2018) 51–66.

A RECOMMENDER SYSTEM FOR FAULT RECOVERY STRATEGIES IN WEB SERVICES COMPOSITION

TESTING 113

doi:10.1007/978-3-319-94376-3_4.

[29] P. Rodriguez-Mier, M. Mucientes, M. Lama, Automatic web service composition with a

heuristic-based search algorithm, Proc. - 2011 IEEE 9th Int. Conf. Web Serv. ICWS 2011. (2011)

81–88. doi:10.1109/ICWS.2011.89.

[30] R.S. Chhillar, Empirical Analysis of Object-oriented Design Metrics for Predicting High ,

Medium and Low Severity Faults using Mallows CP, ACM SIGSOFT Softw. Eng. Notes. 36

(2011) 1–9. doi:10.1145/2047414.2047423.

[31] T. Yanagisawa, Y. Tamura, A. Anand, S. Yamada, Comparison of Hazard-Rates Considering

Fault Severity Levels and Imperfect Debugging for OSS, J. Softw. Eng. Appl. (2021) 591–606.

doi:10.4236/jsea.2021.1411035.

[32] R. [dataset] ElGhondakly, S. Moussa, Services Dependency Graphs for Web Services

Composition Modeling Dataset, IEEE Dataport, V1. (2022).

doi:https://dx.doi.org/10.21227/xacr-xh31.

[33] P. Rodriguez-Mier, M. Mucientes, M. Lama, Hybrid optimization algorithm for large-scale QoS-

aware service composition, IEEE Trans. Serv. Comput. (2015) 1–17.

doi:10.1109/TSC.2015.2480396.

[34] A. Bansal, M.B. Blake, T. Weise, M.C. Jaeger, D.-B. Germany, WSC-08 : Continuing the Web

Services Challenge, 2008 10th IEEE Conf. E-Commerce Technol. Fifth IEEE Conf. Enterp.

Comput. E-Commerce E-Services. IEEE. (2008) 351–354. doi:10.1109/CEC/EEE.2008.67.

[35] S. Kona, A. Bansal, M.B. Blake, S. Bleul, T. Weise, WSC-2009: A quality of service-oriented

web services challenge, 2009 IEEE Conf. Commer. Enterp. Comput. CEC 2009. (2009) 487–490.

doi:10.1109/CEC.2009.80.

[36] G. Bhandari, R. Gupta, S.K. Upadhyay, An approach for fault prediction in SOA-based systems

using machine learning techniques, Data Technol. Appl. 53(4), 397-421. (2019).

doi:10.1108/DTA-03-2019-0040.

