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Abstract: This paper represents a different way of denoising lower limb Surface electromyography 

sEMG signals using Daubechies wavelets Much noise will be needed to remove as we can from this 

signal for it to function properly. The previous works couldn’t accurately determine the most suitable 

method to be used for lower limbs. This paper uses different thresholding approaches to calculate the 

highest value of SNR to identify the best denoising method. And a complete detailed survey of denoising 

techniques for reducing noise from surface electromyography signals is provided. This research has 

important implications for the practical application of lower limb EMG. This paper aimed to ascertain 

what are the most optimal parameters to be applied while using wavelet transform (Daubechies 

wavelets) to achieve the highest possible SNR in sEMG of the lower limb. The sample that was used 

came from 11 healthy subjects doing 3 different movements, using 4 electrodes to extract the signal. To 

identify the best denoising is calculated using different thresholding types, Daubechies levels, and noise 

structures. The result from this experiment indicates that the hard-rigorous SURE threshold and scaled 

white noise provide the highest SNR in every signal tested but the Daubechies level differs from one 

signal to another.  

 

Keywords: Surface electromyography sEMG, Signal Processing, Lower Limb, Daubechies wavelets, 

Denoising. 

 
 

1. Introduction  

 

A biomedical signal is defined as any electrical signal exhibited by and acquired from any organ. Said 

signal adheres to the time domain. Where parameters such as amplitude, frequency and phase can be 

observed, calculated, and acquired. The EMG signal is a biomedical signal that is a quantification of the 

electrical activity sparked due to muscle activity. Thus, EMG is quite a convoluted signal [ 1]. 

Electromyography (EMG) is a predominantly used technique for the diagnosis of peripheral nervous 

system-associated problems. Muscles are controlled by the nervous system. Hence, EMG is quite useful 

in the diagnosis of diseases and disabilities relevant to muscles and their reactions [2]. As a diagnosis 
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method, EMG is a tried-and-true technique. Thus, the required equipment, sensors and devices are 

readily available in the market. The examination of the electrical activity sparked to life due to the 

muscles contracting and relaxing is the heart and soul of EMG [3]. electrical variations are relative to 

the signal from the central nervous system [4]. Action potential (AP) is actualized due to a brain signal 

and triggers as the membrane potential of a certain axon location quickly ascends and descends [5]. This 

is sent towards the ―endplate‖ of a muscle fiber. The AP spreads from the endplate towards both 

endings of the tendons. Two methods are available to quantify the electrical signal of the AP: (1) 

promptly, through interpolating electrodes in the muscle tissue, or (2) superficially, through orienting 

the surface electrodes (EMG) on the skin [6][7][8][9][10]. A multitude of noises is sparked from the 

measurement devices themselves. Said noises are an extremely problematic existence when examining 

surface electromyography (sEMG) signals. Hence, ways to dispose of or minimize the consequence A 

biomedical signal is defined as any electrical signal exhibited by and acquired from any organ. Said 

signal adheres to the time domain. Where parameters such as amplitude, frequency and phase can be 

observed, calculated, and acquired. Noise caused by the electrodes or the electrode orientation and 

power line. interference can be disposed of using classical filters, but the intrusion of white Gaussian 

noise (WGN) is challenging to remove using the previously used classical filters. Wavelet denoising 

algorithms on the other hand have achieved great results in removing white Gaussian noise 

[11][12][13]. Wavelet transform is a relatively freshly developed signal processing tool, that aids in the 

analysis of a multitude of timescales of aspects of a complex signal. The goal of [14] was to scrutinize 

the usage of wavelet denoising to reduce noise for the multifunction myoelectric control system. Two 

electrode channels were used per the following six upper limb motions: hand open, hand close, wrist 

extension, wrist flexion, pronation, and supination. A comparative study of four classical de-noising 

algorithms as well as universal thresholding, SURE thresholding, hybrid thresholding, and minimax 

thresholding are applied in order to dispose of white gaussian noise at numerous signal-to-noise ratio 

ratios (SNRs) from electromyogram signals. Applications of soft and hard thresholding moreover 

threshold rescaling techniques were regarded and therefore the whole procedures of noise reduction 

were applied with totally different wavelet functions and different decomposition levels. Evaluations of 

the performance of noise reduction are determined via mean squared error (MSE). The results show that 

Daubechies wavelet with second orders (db2) provides marginally superior performance than other 

prospects. An appropriate range of decomposition levels is four. Universal and soft thresholding is the 

finest of wavelet denoising algorithms from eight potential denoising processes under investigation. 

Additionally, the threshold employing a level-dependent estimation of level noise showed superior to 

others. This paper[15] presents analysis results of muscle electromyogram signal denoising. within the 

same time, two muscles were examined – an adductor muscle (biceps brtoachii) and an abductor muscle 

(triceps brachii). The electromyogram signal was filtered via the wavelet transform technique, having 

chosen the crucial parameters as wavelet basis function (Daubechies 4), tenth decomposition level, and 

threshold setting method (Heuristic). Following denoising the signal, a brief analysis of the end result 

signal is performed, which has shown that the chosen parameters give the best results. Such a developed 

system features a wide application option, primarily in Mechatronic systems where it may be used for 

instance in teleoperation of a robot arm, command signals for a prosthetic arm, biomedical signal 

filtering, or in rehabilitation aiding robots. The purpose of [16] is to research surface electromyography 

(SEMG) signal analysis from the right rectus femoris muscle as it is performed throughout a walking 

movement. To dispose of the noise from the surface electromyography, wavelet transform has been 

applied. Gaussianity tests are conducted to grasp changes in muscular contraction and to quantify the 

effectiveness of the noise removal method. Results show that the projected technique will effectively 

dispose of noise from the unprocessed SEMG signals for additional analysis. The goal of [1] is to study 

how Wavelet analysis is usually highly effective due to the fact that it provides a straightforward 
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approach for coping with native aspects of a signal. Electromyography (EMG) signals may be used for 

EHW) development, and contemporary human computer interaction. Electromyography signals 

obtained from muscles demand advanced techniques for detection, decomposition, processing, The 

target of [17] to look into how Myoelectric Signals (MES) have an extended tradition with regards to 

prostheses manipulation. Thanks to the signals’ nature, Myoelectric Signals are vulnerable to 

interference and noise. Numerous techniques exist for preprocessing these signals before classification 

algorithms to derive control data are applied. whereas these ways facilitate enhancing the source 

signals, parameters must be meticulously chosen and incorporated on a case-to-case basis. Following 

presenting many noise removal techniques and downsides, they introduce a unique approach by 

applying wavelet detrending to the signal. The approach brought forward yields a wonderful signal-to-

noise ratio and provides in some cases an almost perfect removal of noise interference. Weak signals 

and muscle fatigue don't impact the results. Besides serving as input for a multitude of classification 

techniques, the detrended signal is possible to even be directly used for implementing strong command 

techniques like Cookie crusher or threshold algorithms. A basic Cookie crusher management model was 

chosen to verify the approach as compared to conventional amplitude level schemes. Results show that 

detrended signal information may be utilized for reliable prosthesis manipulation even for users 

exhibiting low amplitude Myoelectric Signals. The aim of [18] was to provide a completely unique 

approach to mono channel power line interference (PLI) and baseline wander (BW) removal from 

surface electromyograms (EMG). It is derived from non-negative matrix factorization (NMF) 

employing a priori information concerning the interferences. It performs a linear decomposition of the 

input signal spectrogram into non-negative elements, that represent the power line interference, baseline 

wander and electromyogram spectrogram estimates. all of them exhibit terribly divergent time-

frequency patterns: power line interference and baseline wander are both sparse whereas 

electromyogram is noise-like. Booting of the classical non-negative matrix factorization algorithm with 

accurately designed power line interference, baseline wander and electromyogram structures and a 

meticulously adjusted matrix decomposition rank will increase the separation performance. The results 

of the study suggest that the projected technique outperforms other progressive strategies. This paper, 

Daubechies wavelets are used to realize the optimum wavelet reconstruction which provides the most 

effective result for EMG feature extraction. Diverse levels and orders of Daubechies wavelets are 

evaluated. This paper provides a complete detailed survey of denoising algorithms via Daubechies 

wavelets for removing noise from surface electromyography signals. The objectives of this paper are to 

determine. 

1) The appropriate wavelet functions and their scale level 

2) The most effective threshold estimator method  

3) Forms of noise to dispose of 

 

2. Methodology 

 

The Dataset used was downloaded from [1] and is as follows, eleven male subjects. They execute three 

movements to research the behavior related to the knee muscle, gait, leg extension from a sitting 

position, and flexion of the leg up. The configuration of the data set is shown in Table 1. The data was 

acquired through four electrodes (Vastus Medialis, semitendinosus, biceps femoris, and rectus femoris). 

The Datalog device used was MWX8 by biometrics of eight digital channels and four analog channels, 

of which four for sampling were used SEMG. This information were sent on to the computer MWX8 

internal storage with a microSD card and transmitted in real-time Datalog software through Bluetooth 

adapter, 14-bit resolution and sampling frequency of 1000Hz.The total number of electrodes is four, 
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corresponding to the time series one for each channel (1 to 4). Each series contains ~ 5 shares or motion 

repetitions for each subject.  

 RF: Recto Femoral. 

 BF: Femoral Biceps.  

 VM: Vastus Medialis. 

 ST: Semitendinosus 

 FX: Flexion at the knee  
 

Table 1 configuration of the data set [19] 

  

 

 

 

These SEMG signals were denoised using discrete wavelet transform and a variety of threshold 

methods. The discrete wavelet transform and threshold based denoising was implemented using the 

MATLAB Wavelet toolbox 

 

2.1. Block Diagram 

   

The fundamental stage is pre-processing EMG data for successful feature extraction and high-accuracy 

classification. sensed EMG data are amplified to increase the amplitude of the signal, where an 

amplification factor of approximately 1000 is done before sampling. 

De-noising. EMG Signals are subject to noise caused by different sources. Therefore, signal denoising 

is a fundamental step for further signal processing. Figure 1 shows the wavelet denoising block. 

 

 

 

 

Figure .1. The wavelet denoising block diagram 

2.2 WAVELET DECOMPOSITION 

 

The wavelet transform’s 1st step in denoising is to decompose the unprocessed (noisy) signal using 

DWT (Daubechies), into a variation of multiresolution components by decomposing the signal into 

approximations am[n] and details dm[n] coefficients. The previous decomposition into different 

frequency bands is simply achieved using a collection of lowpass and high-pass filters. For this paper 

wavelet functions Daubechies (db1: db10) are used at level 5 of decomposition 

2.3 THRESHOLD METHOD 

 

The Resultant discrete wavelet transforms (DWT) coefficients are thresholded using either of the two 

types of thresholding (soft) or (hard) thresholding. Suppose that the equation below represents a simple 

model of EMG signal 

 

Segment Lower Limb 
Channel Ch1 Ch2 Ch3 Ch4 
Muscle RF BF VM ST 
Column 0 1 2 3 

sEMG  Wavelet

gDecomposin 

Threshold 

dsMetho  
Wavelet 

Reconstruction 
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f(t)= s(t) + n(t)                                                        (1) 

 

where: f(t): Is the unprocessed EMG signal. s(t): Is the untainted EMG signal Signal-to-noise-ratio (SNR) 

The equation below is how the signal-to-noise ratio after the previous process was calculated in order to 

evaluate our work and determine which method got better results.  

 

SNR=10*log (S / N)                                                (2)  

 

Where: SNR: Is signal-to-noise ratio in dB (decibels), 

10 is the factor used if signal strength figures are in units of voltage,  

S: Is the measured n(t): Is the noise part of the unprocessed signal.  

 

The original signal f(t) intensity is recorded, mostly by coefficients whose values are higher than a 

threshold, Ts > 0. 

 

The noise signal’s coefficients values are mostly lower than a noise threshold Tn satisfy Tn < Ts. Then the 

noise in the unprocessed signal f(t) can be disposed of by thresholding it’s transform. All quantifications 

of its transform that is lower than Tn are set to 0 [1]. 

 

2.4 SIGNAL RECONSTRUCTION 

 

Inverse transform is applied, resulting in a close approximation of f(t). As it implies, the reconstruction is 

basically walking back the process of decomposition. The approximations am[n] and details dm[n] 

coefficients at every level of our 5 levels are up sampled by two, passing through the low and high pass 

filters then added. After the 5 levels we obtain a close approximation of the original signal f(t) [21]. 

3. RESULTS AND DISCUSSION 

Any of the wavelet functions (db2, db6 and db8) are effective in disposing of noise pertaining to sEMG 

based on [22][23]. In this paper we didn’t want simply effective levels of Daubechies wavelets, we 

wanted the most effective level of Daubechies wavelets tailored for lower limb sEMG. Thus, we tested 

every possible combination of Daubechies wavelets, thresholding types, methods, and types of noise at 

decomposition level 5 as shown in the samples from denoising the four channels while in the standing 

movement in figure (2), (3), (4) and (5), the samples from denoising the four channels while in the sitting 

movement in Figures (6),(7),(8), and(9), and the samples from denoising the four channels while in the 

gait movement in figure(10),(11),(12) and (13). 

 

3.1 Movement  

      3.1.1 standing 
 

 

 

 

 

 

 

 

 



150 Ghada Kareem 

 

 

 

Figure .2: Top left is channel 1 unprocessed signal f(t), top right is denoised signal s(t) and middle bottom is the 

removed noise n(t). Where db3, hard rigorous SURE thresholding, scaled white noise and decomposition level 5 is 

applied,The Recto Femoral (Ch1) had a SNR = 33.1079451172642 db 

 

 

Figure. 3: Top left is channel 1 unprocessed signal f(t), top right is denoised signal s(t) and middle bottom is the 

removed noise n(t). Where db3, hard rigorous SURE thresholding, scaled white noise and decomposition level 5 is 

applied The Femoral Biceps (Ch2) had a SNR = 29.1783065773 dB 

 

   

Figure .4:  Top left is channel 3 unprocessed signal f(t), top right is denoised signal s(t) and the middle bottom is the 

removed noise n(t). Where db8, hard rigorous SURE thresholding, scaled white noise structure. The Vastus 

Medialis (Ch3) had a SNR = 32.8205025149732 dB 
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Figure .5:  Top left is channel 4 unprocessed signal f(t), top right is denoised signal s(t) and middle bottom is the 

removed noise n(t). Where db2, hard rigorous SURE thresholding, scaled white noise and decomposition level 5 is 

applied. The Semitendinosus (Ch4) had a a SNR = 31.7330606314 dB 

 

3.1.2 Sitting 

 

  
Figure . 6: Top left is channel 1 unprocessed signal f(t), top right is denoised signal s(t) and middle bottom is the 

removed noise n(t). Where db4, hard rigorous SURE thresholding, scaled white noise and decomposition level 5 is 

applied. The Recto Femoral (Ch1) had a SNR = 23.52773525933 dB 

 

 

Figure.7: Top left is channel 2 unprocessed signal f(t), top right is denoised signal s(t) and   middle bottom is the 

removed noise n(t). Where db8, hard rigorous SURE thresholding, scaled white noise and decomposition level 5 is 

applied The Femoral Biceps (Ch2) had a SNR =42.0562935026 dB 
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Figure. 8: Top left is channel 3 unprocessed signal f(t), top right is denoised   signal s(t) and middle bottom is the 

removed noise n(t). Where db10 hard rigorous SURE thresholding, scaled white. The Vastus Medialis (Ch3) had a 

SNR = 24.6108433016158 dB 

  

  
Figure. 9: Top left is channel 4 unprocessed signal f(t), top right is denoised signal s(t) and middle bottom is the 

removed noise n(t). Where db6, hard rigorous SURE thresholding, scaled white noise and decomposition level 5 is 

applied. The Semitendinosus (Ch4) had a SNR = 47.2673288003 dB 

 

3.1.3 Gait 

 

  

Figure.10: Top left is channel 1 unprocessed signal f(t), top right is denoised signal s(t) and the middle bottom is the 

removed noise n(t). Where db10, hard rigorous SURE thresholding, scaled white noise, and decomposition level 5 

is applied. The Recto Femoral (Ch1) had a SNR = 34.0962698307663dB 
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Figure .11:  Top left is channel 1 unprocessed signal f(t), top right is denoised signal s(t) and middle bottom is the 

removed noise n(t). Where db3, hard rigorous SURE thresholding, scaled white noise and decomposition level 5 is 

applied The Femoral Biceps (Ch2) had a SNR = he Femoral Biceps (Ch2) had a SNR = 20.336416574814 dB 

 

 

Figure. 12: Top left is channel 3 unprocessed signal f(t), top right is denoised signal s(t) and middle bottom is the 

removed noise n(t). Where db9, hard rigorous SURE thresholding, scaled white. The Vastus Medialis (Ch3) had a 

SNR = 34.0246477691133 dB 

  

  

Figure.13: The top left is channel 4 unprocessed signal f(t), the top right is denoised signal s(t) and the middle 

bottom is the removed noise n(t). Where db1, hard rigorous SURE thresholding, scaled white noise, and 

decomposition level 5 is applied. The Semitendinosus (Ch4) had a SNR =5.490762230542 dB 

 

Results obtained by this research determined the following: By processing three movements with four 

channels each using ten Daubechies levels, level five decomposition, seven different thresholding 

methods, two threshold types, and three noise structures  a total of  5040 SNR values are compared 

and determined the best denoising method for each signal, it was found that using hard rigorous 

SURE thresholding and scaled white noise will yield the best SNR and the results varied between the 

different Daubechies levels as shown in table 2. 
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Table 2. Optimal Daubechies level 
 

Movement Standing Sitting Gait 

Channel 1 2 3 4 1 2 3 4 1 2 3 4 

db level 3 3 8 2 4 8 10 6 10 3 9 1 

 

4. Conclusion 

 

The aim of this study was to ascertain what are the most optimal parameters to be applied while using 

wavelet transform (Daubechies wavelets) to achieve the highest possible SNR in sEMG of the lower 

limb. As we tried all ten different Daubechies levels alongside the seven different thresholding methods 

then being: fixed form, heuristic SURE, rigorous SURE, penalize low, penalize medium, penalize high 

and minimax. All of which were applied both soft and hard We learned that, though the decomposition 

level, thresholding method and types of noise best results were the same for all the signals, the 

Daubechies levels varied based on what kind of movements and which muscle is observed at the time as 

proven in the results previously. Wavelets are powerful tools which are meant to be employed in signal 

processing and data compression. wavelet transforms are a wonderful stand-in to Fourier transforms in 

several applications. In Fourier analysis, a signal is broken down into periodic components; in wavelet 

analysis, a signal is broken down into coefficients localized in both time and frequency domains. Thus, 

wavelet transforms are ideal once signals don't seem to be periodic. Wavelets are taking the signal 

processing field by a storm, it’s excelling in denoising, and better results are achieved with each passing 

day. What method will rein supreme will be left for the future to decide. 
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