
IJICIS, Vol.22, No.4, 35-50

DOI: 10.21608/ijicis.2022.161846.1219

*Corresponding Author: Amira Ali

Information Systems Department, Faculty of Computer and Information Science, Ain Shams University, Cairo, Egypt

Email address: Amiraaly@cis.asu.edu.eg

International Journal of Intelligent

Computing and Information Sciences

AUTOMATION OF PERFORMANCE TESTING: A REVIEW

Amira Ali*

Information Systems

Department,

 Faculty of Computer and

Information Science, Ain

Shams University,

Cairo, Egypt

Amiraaly@cis.asu.edu.eg

Huda Amin Maghawry

Information Systems

Department,

 Faculty of Computer and

Information Science, Ain

Shams University,

Cairo, Egypt

Huda_amin@cis.asu.edu.eg

Nagwa Badr

Information Systems

Department,

 Faculty of Computer and

Information Science, Ain

Shams University,

Cairo, Egypt

Nagwabadr@cis.asu.edu.eg

Received 2022-09-09; Revised 2022-10-10; Accepted 2022-10-12

Abstract: Quality assurance of software applications becomes crucial for achieving a competitive

advantage in the market. Automating the testing process reduces the required cost and human effort.

However, automating the entire testing process is still challenging for both academia and industry. It is

essential to verify the robustness of the application under test (AUT) by conducting performance testing.

Performance testing is a non-functional form of software testing which examines the performance

features of the AUT when exposed to various workloads. The performance behavior can be measured by

throughput, response time, and resource utilization of the AUT under a certain workload. Besides,

performance testing finds the performance breaking points and bottlenecks during the operation of the

AUT. Due to the necessity of conducting performance testing before releasing applications to the market,

this paper surveys the previous related work to performance testing since 2009. Recent studies related to

performance testing for testing both mobile and web-based applications are discussed. The strengths and

weaknesses of these studies are discussed. Besides, a comparison between the previous studies related to

performance testing is held from different perspectives.

Keywords: Performance Testing, Performance Testing Automation, Mobile Apps, web-based Apps,

Performance Testing Tools.

1. Introduction

Performance testing is a form of non-functional software testing. It tests the applications’ behavior when

exposed to a certain workload [1]. A workload refers to the number of concurrent users’ access to the

application under test (AUT). Performance testing evaluates the reliability, scalability, and responsiveness

of the AUT under different workloads. Additionally, performance testing aims to identify the functional

https://ijicis.journals.ekb.eg/

36 Amira Ali et al.

issues that may occur in the AUT under heavy workloads. Thus, performance testing is an essential step

that reveals diagnostic information required to detect bottlenecks in the AUT. Microsoft Performance

Guide mentions multiple types of performance testing [2], such as (i) load testing; (ii) stress testing; (iii)

Spike testing; (iv) Endurance testing; (v) Volume testing; (vi) Scalability testing. Load testing refers to

testing the AUT when exposed to a normal workload. Stress testing measures the reliability of the AUT

when exposed to a heavy workload, beyond the normal workload. Spike testing is a sub-type of stress

testing that measures the performance of the AUT during exposure to a temporarily heavy workload that

increases quickly and repeatedly for short amounts of time. Endurance testing evaluates the performance

of the AUT under an ordinary workload for a prolonged amount of time. Endurance testing aims to

examine the system problems such as memory leaks, which affect the system's performance or may cause

its failure. Scalability testing involves increasing the workload gradually. Also, the workload may remain

steady during the variation in the resources such as CPUs and memory. Volume testing measures the

efficiency of the AUT when exposed to large amounts of data.

The process of performance testing includes the following steps [3], [4], [5]:

• Step 1: Determine the required performance test environment.

• Step 2: Determine the performance acceptance Criteria for the AUT.

• Step 3: Design performance test cases.

• Step 4: Configure the performance testing environment.

• Step 5: Implement the designed performance test cases.

• Step 6: Execute performance test cases.

• Step 7: Analyze the performance test results.

• Step 8: Generate a performance test report.

Figure. 1: The overall cycle of the performance testing process

AUTOMATION OF PERFORMANCE TESTING: A REVIEW 37

Figure 1 shows the overall cycle of the performance testing process. This is considered the best practice

for the process of performance testing [3].The purpose of performance testing is to measure the

performance metrics of the AUT, then detect performance issues that exist in the AUT. Performance

metrics reflect the quality and responsivity, as well as the performance behavior of the AUT. The widely

used performance metrics include the following [3], [6]:

• Response time: refers to the time spent between sending a request to the server and receiving the

response. It is measured in kilobytes per second.

• Throughput: refers to the number of requests/transactions processed in a certain amount of time during

the test. It shows the amount of the required capacity that the AUT can handle. Throughput depends

on the number of concurrent users.

• Wait time: It is called the average latency. It refers to the time taken until the developer receives the

first byte after sending a request.

• Average load time: refers to the average amount of time taken to receive each request. It reflects the

quality and the responsivity of the AUT from the user’s perspective.

• Error rate: refers to the ratio between the failed requests and all requests. The ratio is calculated in

percentage. The failed requests always occur when the load exceeds the capacity of the AUT.

• CPU utilization: refers to the time spent by the CPU to process a request.

• Memory utilization: refers to the amount of memory needed to process a request.

Performance is considered an important quality attribute for all software applications. The presence of

performance issues in any application will lead to negative consequences on the user experience [7]. the

response time of any application whether mobile or web-based application is critical from the user

experience (UX) point of view [8]. However, performance testing is always left until the end of the

testing process, when no excess time remains due to business pressure. Thus, performance testing is

ignored during the development of many applications [9]. Additionally, the process of performance

testing is considered an expensive process due to the need to prepare the following: an appropriate test

environment, tools to simulate the actual simultaneous user access to the AUT, and adequate test cases

which imitate real users’ transactions. Recently, performance testing became a challenge for all types of

software applications (e.g., Android apps, iOS apps, web services) to find performance breaking points

and improve AUT robustness [10].

This paper provides a brief review of the previous work which is relevant to the automation of the

performance testing process. A comprehensive review of the previous research is presented. Multiple

studies related to automating the performance testing process for different types of applications are

discussed to show their features and drawbacks. Besides, excessively utilized commercial performance

testing tools are presented with a comparison of their features.

The remainder of the paper goes as follows: Section 2 surveys the most relevant work related to the

automation of the performance testing process for both mobile and web-based applications. Section 3

compares widely used performance testing tools in the market. Section 4 compares the previous work

38 Amira Ali et al.

related to the automation of the performance testing process and discusses their strengths and weaknesses.

Finally, section 5 includes the conclusion.

2. The Automation of Performance Testing

This paper focuses on discussing the techniques for automating the performance testing process. In this

section, the previous work in the field of performance testing will be surveyed. The process of automating

performance testing for mobile applications is different from the case of testing web-based applications.

The architecture of mobile application development is not the same as that of web-based applications. In

the literature, many researchers focused on testing a particular type of application whether web or mobile.

Hence, we categorize the past relevant research into two categories according to the type of AUT whether

mobile, web-based, or cloud application. Sections 2.1, 2.2, and 2.3 review the previous studies related to

performance testing for mobile, web-based applications, and cloud applications, respectively.

2.1. Performance Testing for Mobile Applications

The widespread of smartphones leads to the growth of mobile applications development [11]. Mobile

applications need to be tested for their functional requirements satisfaction as well as their efficient

performance [12]. Mobile applications rely on processing speed, memory usage, battery level, and

network type. Many authors proposed approaches for automating the process of mobile application

testing. However, the majority of the proposed approaches only addressed the functional aspects of mobile

applications. A limited number of authors are concerned with the non-Functional Testing perspective,

especially Performance testing for mobile applications [13], [14], [15].

Online mobile applications are widely used in different aspects of our daily life such as online shopping,

ticket booking, and E-commerce). Testing the performance of this type of application is introduced in the

literature. For example, an online mobile applications testing framework called (Test My APP) was

proposed by Rajan et al [16]. The proposed framework measured the response time of online mobile

applications. The response time values were recorded iteratively under various device and network

conditions during the testing process. Then, the author applied the chi-square test distribution [17] to

determine the overall performance evaluation of the AUT accurately. The average response time value

was not accurate. However, the author depended on a set of recorded test cases, which were stored in a

database. Hence, the proposed approach depended on the testers’ participation to generate and store test

cases in a database. The author was not concerned with the automatic generation of efficient test cases.

The author only focused on calculating AUT response time including network delay and hardware delay

iteratively. Then, the author got the Chi-Square value that represented the overall performance evaluation

measure of AUT. The author ignored the other performance metrics such as resource utilization, and

throughput. The proposed framework needs the Android device to be connected to the test machine using

a USB connector or through a wireless connection. Additionally, the proposed framework depended on

the tester to set up the required test environment manually.

AUTOMATION OF PERFORMANCE TESTING: A REVIEW 39

Mobile applications are usually characterized by a stumpy development lifecycle to earn a competitive

advantage. Some organizations conduct performance testing at the system test level. Sometimes, system-

level performance testing is imperfect due to the limitations of the mobile applications development

environment. Therefore, there are studies in the literature that consider the early accomplishment of

performance testing at the unit testing level of mobile applications, rather than focusing such tests in the

final stage of development. Unit-level performance testing processes can be conducted in a similar manner

to conducting system-level testing. Besides, unit-level performance testing suits organizations that work

according to the agile working model [18].

Several studies presented frameworks for unit-level performance testing, such as A method for

performance testing based on Test-Driven Development (TDD) proposed by Kim et al [19], [20]. The

proposed method relied on a Mobile Performance Benchmark Database (MObilePBDB) and PJUnit tool.

The MObilePBDB was considered the basic building block in the proposed performance unit test method.

The author used the MObilePBDB to gather performance data generated from the benchmark testing

conducted on real mobile devices. Then, the author utilized these data during the performance unit testing

conducted in an emulator-based test environment. Besides, the author implemented an Eclipse plug-in

called PJUnit. PJUnit created and executed performance test scripts. This diminishes the time and cost

requisite for performance testing and helps to find errors in the AUT. The author generated a test case

based on the source code of AUT as an input. However, AUT’s source code maybe not be available in

some cases. Additionally, the author focused on the test cases execution, but the author did not matter

about improving the test execution by applying a parallel test execution method. Additionally, there was

no test results analysis method mentioned by the author.

Some performance testing frameworks presented in the literature did not depend on the source code of

the AUT. For example, AppSpeedXray is an open-source mobile applications performance measurement

and analysis framework. AppSpeedXray was proposed by Mun et al [21]. AppSpeedXray provides a

unified view of mobile app performance metrics on your Android smartphone without source codes or

compilation. The proposed AppSpeedXray tool gatherers mobile app performance data such as CPU

utilization, packet trace, XML log, and execution video file. These data are collected from the binary file

of the AUT. Then, the proposed AppSpeedXray framework evaluates the performance metrics. The

proposed tool includes the following components: (i) a mobile app crawler to collect Android APK

(Android Application Package) files; (ii) a UI (User Interface) to allow the user inputs needed for testing;

(iii) a performance analyzer that figures out the performance metrics speed index, mobile app performance

metrics, and traffic statistics. The author implemented the performance analyzer component in Python to

include a scene detector, snapshot generator, and similarity calculator modules. However, the author did

not mention specifically how the performance analyzer works and how it analyzed the collected

performance data. Additionally, the author did not discuss details about the test cases used in the proposed

framework, which were required to collect the performance data. The author did not mention the

performance testing tools used for test case execution.

40 Amira Ali et al.

On the other hand, there are types of performance testing frameworks presented in the literature depending

on the source code of the AUT. For example, Zeng et al [22] presented a framework to measure the page

load time of Android applications. The presented framework is integrated with Appium [23] and Maven

package management tools [24]. Appium is an open-source mobile application testing tool used for

executing test cases. The proposed framework mainly focuses on testing whether the page is loaded or

not (i.e. elements of a certain page appeared or not). Firstly, the proposed framework records the screen.

Then, the author calculates the time spent loading the page frame by frame. The proposed framework

implemented the following methods: (i) screen recorder method; (ii) video-to-picture conversion method,

(iii) first and last image comparison methods; (iv) final load time calculation method. Then, the recorded

video file is analyzed to measure the page load time.

2.2. Performance Testing for Web-based Applications

Recently, web-based applications dominate most of the activities accomplished during the day (e.g., E-

Commerce, E-learning, social media). There are different types of web-based applications such as web

services, and web applications. Users spend a lot of time using these apps. The behavior of web-based

applications should be ensured before releasing them for public use. Performance testing evaluates the

quality of web applications. Hence, different types of web-based applications need to thoroughly test their

performance under heavy workloads.

Many researchers study the performance testing of web-based applications from different perspectives.

Some researchers propose self-adaptive approaches for performance testing, which neither depend on the

source code nor performance/system models for the AUT. For instance, self-adaptive reinforcement

learning-driven load testing approach called RELOAD was proposed by Moghadam et al [25]. The

proposed RELOAD approach generates an effective workload that can be utilized in further relevant

testing scenarios (e.g., performance regression testing). the RELOAD learns from the continuous changes

in both the AUT and the execution environment. The author depended on the participation of testers to

determine the action list that resembled the test scenarios. This means that the test cases generated by the

proposed approach are created partially manually. The proposed RELOAD approach focuses on searching

for the optimal workload that leads to the best performance. However, the author ignored identifying the

workload that leads to the performance bottleneck. JMeter tool [26] is used to generate the required

workload that simulates the real users’ accesses.

Performance unit testing permits developers to recognize the performance behavior of web applications.

Besides, it detects performance issues continuously during the development of web applications [27].

Therefore, the authors adopt a web application performance testing approach at the unit level. The adopted

approach supports the widespread usage of an agile method [28] and test-driven development (TDD). For

example, a unit-level performance testing approach for web applications testing called PerfMock was

introduced by Chatley et al [29]. The author focused on presenting an approach for executing the

performance testing at the unit level, continuously in a test-driven manner. The PerfMock prolongs a

well-established mocking framework for Java called jMock2 [30], which allows these tests. Mock objects

AUTOMATION OF PERFORMANCE TESTING: A REVIEW 41

are used to represent the real cooperation of objects under test. Mock objects are configured to imitate

specific test scenarios. The introduced performance unit testing approach led to rapid turnaround times.

The proposed approach works completely in virtual time (i.e., the performance estimated values are

produced without having to stay for the passage of real-time). However, the introduced approach has

some weaknesses, such as (i) The author did not mention the method used to increase the workload

submitted to AUT. The workload was generated using Apache benchmark [31], instead; (ii) The author

was not concerned with the automatic generation of test cases and executable test scripts. Test suit was

written using the Junit tool [32], instead; (iii) the author ignored the test results analysis steps.

Test case generation is the core step in the performance testing process [33]. Performance test case

generation approaches are introduced in the literature. For example, Zhou et al [34] introduced a workload

model for representing and generating synthetic web workloads and test cases for web applications load

testing. The author depended on the context-based sequential model for defining user behavior. The

proposed approach requires accurate modeling of the session. Thus, the proposed approach requires

testers to have good knowledge of session, actions, and request concepts. However, the context-based

sequential model is not produced during the development and design of the AUT. As a result, the proposed

model requires extra time and cost for modeling.

Many authors integrate automated user interface (UI) testing along with load testing. This is considered

a way to allow a complete quality measurement of the user’s experience of AUT. For instance, Whiting

et al [35] introduced an approach for integrating load testing with automated UI testing. The author aimed

to give an overall quality calculation to the user’s perception of the AUT. the proposed approach

implements a holistic method for evaluating the performance of the AUT. The holistic method used in

the proposed approach considers different types of users. This lets testers measure the system quality from

the perspective of multiple users. Thus, the proposed approach is based on the user research team that

resembled various user groups. The user research team is responsible for picking out the most significant

attributes in the AUT, then assigning appropriate weights to these attributes. An effective test oracle is

derived and tested according to these weights.

Generally, a test oracle is used to determine whether the AUT has passed or failed for a certain test case.

It compares the results of AUT for certain test case inputs and the result that AUT should provide. The

proposed approach properly identifies these weights during the collaboration between the technical teams

and users. The strengths of the proposed model include the improvement of the software engineering sub-

discipline of requirements gathering and increasing the ability of technical and non-technical users to

debate the non-functional requirements. On the contrary, the proposed approach relies on the stakeholders

to allocate weights, which reflects the significance of the functionality and performance. These weight

values may not be empirical, they only reflect a major idea of prioritization functionality and performance.

42 Amira Ali et al.

2.3. Performance Testing for Cloud Applications

Nowadays, cloud applications are widespread, due to their quick response to business needs. Cloud

application refers to a software programming model that needs collaboration between cloud-based and

local components. This software programming model depends on remote servers to process their logic.

Cloud applications require an internet connection to access them through a web browser [36]. They are

quickly updated, tested, and deployed. This provides organizations with agility experience and quick time

to market [37]. Testing the performance of cloud applications is discussed in the literature. For example:

1. A cloud performance testing approach called PT4Cloud was presented by He et al [38]. The presented

PT4Cloud approach targets the performance testing of IaaS clouds. The author aimed to reduce the

number of test runs, as well as satisfy the high-test coverage. Test coverage is a metric that measures

how much the test cases cover the AUT’s code and functionalities. Stop conditions are used in the

proposed PT4Cloud to cut off the repeated test runs and obtain accurate performance testing results.

This led to a reduction in the performance testing cost. The author used non-parametric statistical

approaches (i.e., likelihood theory and the bootstrap method) in the proposed approach. The author

mentioned some threats to validity, such as (i) The performance results of the PT4Cloud remain valid

unless the execution environment is not changed. This meant changes in the execution environment

change the performance results of the proposed approach; (ii) Cloud uncertainty factors including data

center location, VM types, and hardware variation, may affect the performance. The author did not

consider these cloud factors in the proposed approach.

2. A performance testing approach for an application hosted on a serverless computing environment was

introduced by Khatri et al [39]. Serverless computing refers to the function as a service (FaaS), where

the service provider processes and executes the code sent by the clients. Virtual machines (VMs) are

hired and managed by the service provider. The author conducted the performance test for certain

business flows and simulated the expected users’ transactions under the peak load (i.e. peak working

hours). The author executed the test over many iterations and under high-stress loads to determine the

application response time. The workload was generated using the JMeter tool, which creates multiple

threads to simulate the virtual users. The proposed approach conducts the following: (i) conduct

baseline performance testing to identify the initial issues in the AUT; (ii) generate performance test

scripts and test data sets; (iii) conduct load and stress tests; (iv) fix the found issues; (v) repeat the

tests until the exit criteria were met. However, the author did not discuss some important issues, such

as (i) The test cases generation method; (ii) The test results analysis method that could be applied to

determine the performance peaks; (iii) The test environment setup.

Microservices are software applications that consist of loosely coupled software components. They are

single-function modules and have well-defined interfaces and operations. They provide an independent

deployment facility and can be integrated continuously by the developers [40]. Recently, testing the

scalability of microservices deployment by conducting load tests is presented in the literature. For

example, an approach for the performance assessment of microservice deployment alternatives was

AUTOMATION OF PERFORMANCE TESTING: A REVIEW 43

presented by Avritzer et al [41], [42]. The high-level performance models were used in the presented

approach. The author used the operational profile data to identify the probability of occurrence of each

operational workload situation in production. Each operational situation had a test case. The author used

the operational workload situations (e.g., arrival rates or a concurrent number of users) in conducting load

testing. The threats to validity mentioned by the author included: (i) The generation of the experiment

needs an estimation of the occurrence percentage of each performance test case. This threatens the

accuracy of the estimated operational distribution; (ii) The author relied on the automated execution and

analysis of the load test cases. This requires uninterrupted improvement using an identified approach and

automated deployment.

3. Performance Testing Tools

In this section, various examples of performance testing tools that are excessively used in the market are

discussed. These tools target performance testing for both web-based and mobile applications. The

mentioned tools are chosen from the list of the top 10 frequently used performance testing tools in 2020

[43]. Table 1 presents a comparison between these selected commercial performance testing tools. Tools

included in table 1 are (i) Apache JMeter [26]; (ii) HP Loadrunner [44]; (iii) Microsoft Visual Studio

(TFS) [45] (iv) WebLOAD [46]; (v) NeoLoad [47]; (vi) LoadNinja [48]; (vii) LoadUI Pro [49]. These

tools are compared according to the following criteria: (i) whether it is open source or needs licenses fees;

(2) the type of the interface (i.e. Console, GUI); (iii) type of the AUT that the tool can test it (i.e. mobile

application, web-based application); (iv) the required system specification to use the tool; (v) the scripting

language the tool support it (e.g. javascript); (vi) the supported protocols.

4. Discussion and Research Gaps

Majority of the researchers who studied performance testing lack important issues. They did not care

about providing effective testing approaches to automate the whole performance testing process. Tables

2, and 3 show a summary of the previously mentioned studies from the literature. Table 2 presents the

comparison between performance testing approaches for mobile applications testing. Table 3 presents the

comparison between performance testing approaches for web-based application testing. Table 4 presents

the comparison between performance testing approaches for web-based application testing. The

comparison in both tables 2, 3, and 4 is based on the following: (i) the proposed automatic test cases

generation approach; (ii) the proposed automatic test execution approach; (iii) support the parallel test

execution; (iv) the proposed automatic test result from analysis approach. Additionally, table 5 shows the

comparison between the advantages and drawbacks of the top performance testing tools in the market.

44 Amira Ali et al.

Table 1: Comparison Between the Top Performance Testing Tools in The Market

Point of

comparison

Apache

JMeter

HP

Loadrunner

Microsoft

Visual Studio

(TFS)

WebLOAD

NeoLoad

LoadNinja

LoadUI

Pro

Open

Source

Yes No No No No No No

Interface GUI GUI GUI Console Graphical and

 Code-based

GUI GUI

Type of

Supported

AUT

Web and

Mobile apps

Web and

Mobile apps

Web and Mobile

apps

Web

applications

Web and

Mobile apps

Web

applications

Web

services

System

Requirements

− Windows

− MAC

− UNIX

− Windows

− LINUX

− Windows 7

− Windows

Vista

− Windows

Server 2008

− Later

Windows

operating

systems.

− Windows

− LINUX

− Windows

− Linux

− Solaris.

None

− Windows

− Linux

− Mac OS

Scripting

language

− Javascript

− BeanShell

− Citrix

− ANSI C

− .Net

− Java

− PowerShell

− Perl

− Javascript

− YAML-based

description

format

(human

readable,

implementati

on agnostic,

and domain-

specific to

load testing)

− Jenkis

pipeline as

Code

− Scriptless

−

(Capture and

playback

script using

InstaPlay

recorder)

− Java

− JavaFX

− Groofy

Supported

Protocols
− HTTP

− HTTPS

− XML

− SOAP

− Java-based

protocols

− FTP

− Support all

protocols

− Support all

protocols

− HTTP

− HTTPS

− XML

− Enterprise

applications

− Network

Technology

− Server

Technology

− HTTP

− HTTPS

− SOAP

− REST

− Flex Push

− AJAX Push

− HTTP

− HTTPS

− SAP GUI

Web

− Web

Socket

− Java-

based

protocol

− Google

Web

Toolkit

− Oracle

form

− HTTP

− REST

− SOAP

− JSON

− API

Blueprint

− JSON

Schema

− XML

Schema

AUTOMATION OF PERFORMANCE TESTING: A REVIEW 45

Table 2: Comparison Between Performance Testing Approaches for Mobile Applications Testing

Approaches
Automatic Test

Case Generation

Automatic Test

Execution

Support Parallel

Execution

Automatic Test

Result Analysis

Rajan et al [16] No Yes No No

Kim et al [19] Yes Yes No No

Kim et al [20] No Yes No No

Mun et al [21] No Yes No Yes

Zeng et al [22] No Yes No No

Table 3: Comparison Between Performance Testing Approaches for Web-based Applications Testing

Approaches

Automatic Test

Case Generation

Automatic

Test Execution

Support Parallel

Execution

Automatic Test

Result Analysis

Moghadam et al [25] No Yes No No

Whiting et al [35] Yes No No No

Chatley et al [29] No Yes No No

 Zhou et al [34] Yes Yes No No

Table 4: Comparison Between Performance Testing Approaches for cloud Applications Testing

Approaches

Automatic Test

Case Generation

Automatic

Test Execution

Support Parallel

Execution

Automatic Test

Result Analysis

Khatri et al [39] No Yes No No

Avritzer et al [41], [42] Yes Yes No No

He et al [38] No Yes No No

The features and drawbacks of the previously mentioned studies and tools are derived from examining

the information included in tables 2, 3, 4, and 5. The concluded strengths are as follows:

• The performance testing for different types of web-based applications (e.g. cloud apps, web services,

microservices, web apps) is discussed in the literature.

• Few performance test cases generation techniques are proposed.

• Techniques for the automatic analysis of performance test results are discussed.

• The commercial performance testing tools in the market mainly execute the test cases efficiently.

• The commercial performance testing tools in the market can generate a scalable virtual workload that

imitates the real concurrent users’ access to the AUT. These tools submit workloads to the AUT, then

measure the performance metrics (e.g., response time, throughput) of the AUT.

• LoadNinja and Microsoft Visual Studio (TFS) tools provide analytics and reporting features.

• LoadUI Pro allows parallel load testing.

46 Amira Ali et al.

Table 5: Comparison Between Advantages and Drawbacks of the Top Performance Testing Tools in the Market

Performance Testing Tools
Advantages Drawbacks

Apache JMeter [26]
− Run different tests simultaneously

− Provides accurate test results

− Provides data analysis and visualization

− Requires low scripting efforts

− Available free of charge

− Can be installed easily

− Allows test recording for native and browser applications

− Can’t support Javascript, so can’t

support AJAX requests

− High memory consumption, especially

in the GUI mode.

HP Loadrunner [44]
− Allows testing of different types of applications

− Allows scalability in the simulated workload

− Checks network and server resources.

− Supports the automatic client/server performance tracing

while testing

− High license cost

− License cost is based on the number of

virtual users

− Sometimes has compatibility issues.

− Firewall causes installation issues

Microsoft Visual Studio

(TFS) [45]
− Easy to use

− Visualizes test reports graphically

− Has high scalability in the simulated workload

− High license cost

− Support MS Windows operating

system only

WebLOAD [46]
− Easy to use

− Generates a huge number of virtual users locally and on the

cloud

− Defines the features of the test easily as DOM-based

recording/playback, automatic correlation

− Supports many technologies (e.g., web protocols, enterprise

applications)

− Integrates with open-source software (i.e., Selenium,

Jenkins), mobile testing (Perfecto Mobile)

− Long user documentation

− Complex setup

− High License cost

NeoLoad [47]
− Can be used easily

− Allows graphical and code-based approaches

− Provides realistic simulation of user behavior

− Continuously schedules manage, and shares test resources

and results across the organization.

− Has a low-cost alternative to the LoadRunner tool

− Automates test design, maintenance, and analysis for Agile

and DevOps teams

− Limited analysis and reporting

capabilities.

− Building Test Plans takes a long time

LoadNinja [48]
− lessen the time needed for testing by 60%

− Used real browsers instead of load emulators

− Support the scriptless load test creation and replay with the

InstaPlay recorder

− Generates Load with 1000s of real browsers

− Real-time debug tests

− Real-time virtual user activity management.

− Can be hosted on the cloud, no server machine & upkeep

required

− Has analytics and reporting features

− High license cost

LoadUI Pro [49]
− Provides cloud-based load tests

− Allows the parallel load testing

− Provides server monitoring mechanism.

− Reuses existing functional tests

− Has distributed load generators

− Drags and drops load tests on distribution agents on the cloud

− High license cost

AUTOMATION OF PERFORMANCE TESTING: A REVIEW 47

The concluded weaknesses that reflect the current research gaps are as follows:

• There is no comprehensive testing framework that can automate the whole performance testing

process.

• The majority of authors were interested in executing the performance test cases without caring about

the rest of the performance testing process (i.e., test case generation, test result analysis, and test

report generation).

• Commercial tools in the market neither generate test cases nor analyze test results automatically.

They rely on the manually generated test cases that are given as input to be executed.

• Some of the commercial tools rely on capture and replay techniques for test case generation.

Although, capture and replay need testers’ collaboration and do not ensure the complete coverage of

the AUT.

• Some commercial testing tools in the market have high license fees, are difficult to use, operate only

on certain operating systems, and need complex setups.

5. Conclusion

Recently, users focused on the quality of software applications. The developed software applications

should be tested to validate that they can fulfill their required functionality as well as their performance

and reliability requirements. Thus, Performance testing becomes critical. It ensures that the AUT

satisfies its functional requirements under multiple workloads of simultaneous user accesses. This

evaluates the stability and reliability of the AUT when exposed to various workloads. Performance

testing demands efficient testing approaches, experienced testers, adequate test cases, and precise

execution tools. Thus, it gains interest from researchers who studied it from different perspectives. This

paper provides a brief review of the current state-of-the-art in the performance testing field. The paper

introduces the recent research related to performance testing for both mobile and web-based applications.

Besides, an analysis of the applied approaches is conducted to pinpoint their strengths and weaknesses.

A comparison between the discussed studies is provided. Additionally, issues involved in performance

testing are identified from the previous studies in the field of performance testing. These issues still await

proper solutions. As a result, new opportunities and challenges appear in the field of performance testing,

which challenges researchers to provide solutions.

References

1. Hakeem, Mohd Abdul, Mohammed Abdul Razack Maniyar, and Mohd Khalid Mubashir Uz Zafar.

"Performance testing framework for software mobile applications.", 2022.

2. Microsoft Performance Guide, https://docs.microsoft.com/en-us/previous-versions/msp-n-

p/bb924375(v=pandp.10)?redirectedfrom=MSDN

3. Arif, Muhammad Moiz, Weiyi Shang, and Emad Shihab. "Empirical study on the discrepancy

between performance testing results from virtual and physical environments." Empirical Software

Engineering 23, no. 3 (2018): 1490-1518.

48 Amira Ali et al.

4. Mazuera-Rozo, Alejandro, Catia Trubiani, Mario Linares-Vásquez, and Gabriele Bavota.

"Investigating types and survivability of performance bugs in mobile apps." Empirical Software

Engineering 25, no. 3 (2020): 1644-1686.

5. Hao, Dan, Yinghui Chen, Fan Tang, and Feng Qi. "Distributed agent-based performance testing

framework on Web Services." In 2010 IEEE International Conference on Software Engineering and

Service Sciences, pp. 90-94. IEEE, 2010.

6. Goetz, Jozef, and M. Ruvacaba. "Mobile application performance for different platforms." In

Proceedings of International Research Conference on Engineering and Technology, Kitakyushu,

Japan, pp. 62-71. 2016.

7. Moghadam, Mahshid Helali, Mehrdad Saadatmand, Markus Borg, Markus Bohlin, and Björn Lisper.

"Learning-Based self-adaptive assurance of timing properties in a real-time embedded system." In

2018 IEEE International Conference on Software Testing, Verification and Validation Workshops

(ICSTW), pp. 77-80. IEEE, 2018.

8. Samir, Amira, Huda Amin, and Nagwa Badr. "A survey on automated user interface testing for mobile

applications." International Journal of Intelligent Computing and Information Sciences (2022): 1-11.

9. Moghadam, Mahshid Helali. "Machine learning-assisted performance testing." In Proceedings of the

2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, pp. 1187-1189. 2019.

10. Moghadam, Mahshid Helali, Mehrdad Saadatmand, Markus Borg, Markus Bohlin, and Björn Lisper.

"Machine learning to guide performance testing: An autonomous test framework." In 2019 IEEE

international conference on software testing, verification and validation workshops (ICSTW), pp.

164-167. IEEE, 2019.

11. Li, Deguang, Bing Guo, Yan Shen, Junke Li, and Yanhui Huang. "The evolution of open‐source

mobile applications: An empirical study." Journal of software: Evolution and process 29, no. 7 (2017):

e1855.

12. Jilani, Atif Aftab, Muhammad Uzair Khan, Muhammad Zohaib Iqbal, and Muhammad Usman. "An

automated search‐based test model generation approach for structural testing of model

transformations." Journal of Software: Evolution and Process (2022): e2461.

13. Park, Joonseok, Taejun Kang, and Keunhyuk Yeom. "Mobile situation‐aware framework for

developing smart mobile software." Journal of Software: Evolution and Process 26, no. 12 (2014):

1213-1232.

14. Ali, Amira, Huda Amin Maghawry, and Nagwa Badr. "Automated parallel GUI testing as a service

for mobile applications." Journal of Software: Evolution and Process 30, no. 10 (2018): e1963.

15. Az-zahra, Hanifah Muslimah, Nafilah Fauzi, and Agi Putra Kharisma. "Evaluating E-marketplace

mobile application based on people at the center of mobile application development (PACMAD)

usability model." In 2019 International Conference on Sustainable Information Engineering and

Technology (SIET), pp. 72-77. IEEE, 2019.

16. Rajan, VS Sundara, A. Malini, and K. Sundarakantham. "Performance evaluation of online mobile

application using Test My App." In 2014 IEEE International Conference on Advanced

Communications, Control and Computing Technologies, pp. 1148-1152. IEEE, 2014.

AUTOMATION OF PERFORMANCE TESTING: A REVIEW 49

17. Shi, Dexin, Christine DiStefano, Heather L. McDaniel, and Zhehan Jiang. "Examining chi-square test

statistics under conditions of large model size and ordinal data." Structural Equation Modeling: A

Multidisciplinary Journal 25, no. 6 (2018): 924-945.

18. Mishra, Deepti, and Alok Mishra. "Complex software project development: agile methods adoption."

Journal of Software Maintenance and Evolution: Research and Practice 23, no. 8 (2011): 549-564.

19. Kim, Heejin, Byoungju Choi, and W. Eric Wong. "Performance testing of mobile applications at the

unit test level." In 2009 Third IEEE International Conference on Secure Software Integration and

Reliability Improvement, pp. 171-180. IEEE, 2009.

20. Kim, Heejin, Byoungju Choi, and Seokjin Yoon. "Performance testing based on test-driven

development for mobile applications." In Proceedings of the 3rd International Conference on

Ubiquitous Information Management and Communication, pp. 612-617. 2009.

21. Mun, Hyunsu, and Youngseok Lee. "Appspeedxray: A mobile application performance measurement

tool." In Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 1010-1012.

2020.

22. Zeng, Wentao, Xiangyu Bai, and Kexin Zhou. "Automation Test Tool for the Page Load Time of

Mobile Applications." In 2021 International Conference on Information and Communication

Technologies for Disaster Management (ICT-DM), pp. 181-186. IEEE, 2021.

23. Appium, https://appium.io/

24. Maven package management tools, https://maven.apache.org/

25. Moghadam, Mahshid Helali, Golrokh Hamidi, Markus Borg, Mehrdad Saadatmand, Markus Bohlin,

Björn Lisper, and Pasqualina Potena. "Performance testing using a smart reinforcement learning-

driven test agent." In 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 2385-2394.

IEEE, 2021.

26. JMeter tool, https://jmeter.apache.org/

27. Ghafari, Mohammad, Konstantin Rubinov, and Mohammad Mehdi Pourhashem K. "Mining unit test

cases to synthesize API usage examples." Journal of software: evolution and process 29, no. 12

(2017): e1841.

28. Poth, Alexander, Susumu Sasabe, Antònia Mas, and Antoni‐Lluís Mesquida. "Lean and agile software

process improvement in traditional and agile environments." Journal of Software: Evolution and

Process 31, no. 1 (2019): e1986.

29. Baltas, Nikos, and Tony Field. "Continuous performance testing in virtual time." In 2012 Ninth

International Conference on Quantitative Evaluation of Systems, pp. 13-22. IEEE, 2012.

30. jMock2, http://jmock.org/

31. Apache benchmark, https://ubiq.co/tech-blog/how-to-use-apache-bench-for-load-testing/

32. Junit tool, https://junit.org/junit5/

33. Singh, Rajvir, Rajesh Bhatia, and Anita Singhrova. "Demand based test case generation for object

oriented system." IET Software 13, no. 5 (2019): 403-413.

34. Zhou, Junzan, Bo Zhou, and Shanping Li. "Ltf: a model-based load testing framework for web

applications." In 2014 14th International Conference on Quality Software, pp. 154-163. IEEE, 2014.

35. Whiting, Erik. "Granular Modeling of User Experience in Load Testing with Automated UI Tests."

In 2021 International Conference on Data and Software Engineering (ICoDSE), pp. 1-5. IEEE, 2021.

50 Amira Ali et al.

36. Pahl, Claus, Pooyan Jamshidi, and Danny Weyns. "Cloud architecture continuity: Change models and

change rules for sustainable cloud software architectures." Journal of Software: Evolution and Process

29, no. 2 (2017): e1849.

37. Akbar, Muhammad Azeem, Arif Ali Khan, Sajjad Mahmood, Ahmed Alsanad, and Abdu Gumaei.

"A robust framework for cloud‐based software development outsourcing factors using analytical

hierarchy process." Journal of Software: Evolution and Process 33, no. 2 (2021): e2275.

38. He, Sen, Glenna Manns, John Saunders, Wei Wang, Lori Pollock, and Mary Lou Soffa. "A statistics-

based performance testing methodology for cloud applications." In Proceedings of the 2019 27th

ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, pp. 188-199. 2019.

39. Khatri, Deepak, Sunil Kumar Khatri, and Deepti Mishra. "Performace Testing Approach for

Enterprise Application comprising Serverless Component." In 2021 International Conference on

Intelligent Technologies (CONIT), pp. 1-4. IEEE, 2021.

40. Balalaie, Armin, Abbas Heydarnoori, Pooyan Jamshidi, Damian A. Tamburri, and Theo Lynn.

"Microservices migration patterns." Software: Practice and Experience 48, no. 11 (2018): 2019-2042.

41. Avritzer, Alberto, Daniel Menasché, Vilc Rufino, Barbara Russo, Andrea Janes, Vincenzo Ferme,

André van Hoorn, and Henning Schulz. "PPTAM: production and performance testing based

application monitoring." In Companion of the 2019 ACM/SPEC International Conference on

Performance Engineering, pp. 39-40. 2019.

42. Avritzer, Alberto, Vincenzo Ferme, Andrea Janes, Barbara Russo, Henning Schulz, and André van

Hoorn. "A quantitative approach for the assessment of microservice architecture deployment

alternatives by automated performance testing." In European Conference on Software Architecture,

pp. 159-174. Springer, Cham, 2018.

43. https://www.edureka.co/blog/performance-testing-tools/

44. HP Loadrunner, https://www.microfocus.com/en-us/products/loadrunner-professional/overview

45. Microsoft Visual Studio (TFS), https://docs.microsoft.com/en-us/azure/devops/server/tfs-is-now-

azure-devops-server?view=azure-devops

46. WebLOAD, https://www.radview.com/webload-download/

47. NeoLoad,https://www.tricentis.com/software-testing-tool-trial-demo/neoload

trial/?utm_source=referral&utm_medium=redirect&utm_campaign=neotys

48. LoadNinja, https://loadninja.com/

49. LoadUI Pro, https://download.cnet.com/LoadUI-64-bit/3000-2383_4-75915516.html

