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Abstract: Generating source code is necessary especially as software evolves in complexity and 

demand. Finding a mechanism to generate the source code according to the requirements will save time 

for developers at the stage of development of the software. In this paper, a mechanism is proposed to 

generate the source code based on the database schema and user requirements (user story). This model 

contains three layers: The first layer is to analyze each of the database schema, extract the 

relationships between the tables, determine the meanings of the fields and analyze the user’s story to 

find the functions performed by each role of the software users. The second layer is deducing new 

functions based on what was mentioned in the first layer and extracting the knowledge that contains the 

solutions to the problems that are inferred. The knowledge bases used are WordNet and Backend 

Ontology built from scratch. In the third Layer, the solutions are converted to source code based on 

templates extracted from the knowledge and configured, that is applied to the templates. The model 

showed success in generating the source code, generating PHP source code for a site that is tested and 

generated seventy percent of what was required to be written by programmers. 
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1. Introduction 

 

In the software development cycle [1], the development process is one of the most important processes, 

as it writes the source code that achieves the requirements that were set in the plan and design. 

Therefore, it takes a long time. Experienced developers take less time to develop because of the 

recurrence of the problem. As for the less experienced developers, they resort to using old source code 

that they wrote and uses it as a template to modify it according to the new requirement. Therefore, there 

is a need for an automated way to generate the source code as per the requirement. Moreover, there is 

no standardized approach or mechanism for generating the source code as this varies with the purpose 

of the source code and the different inputs. In generating source code from pseudocode, Deep Learning 

(DL) [2], Statistical Machine Translation (SMT) [3] or Neural Machine Translation (NMT) [4] are used 

for this purpose [5-8]. The Neural Machine Translation (NMT) is more efficient than SMT. In addition, 

the SMT consumes time in the training process [9,10]. The most popular model in the NMT uses 

Recurrent Neural Network (RNN) [6,7,8] for Translation. The main problem in RNN is changing 

weights to very small value in the training process which is called vanishing gradient [11] or changing 

weights to have the large value which is called exploding gradient. Thus, using the Long Short-Term 

Memory (LSTM) solves this problem [12]. Recently, a Machine Translation Model (MTM) based on 

Deep Learning (DL) is proposed by Google [13]. The main core of the model is based on the self-

attention layers. The DL is used for generating source code from image of sketch design [14,15]. Both 

models use the Convention Neural Network (CNN) as the main unite of model design, but different in 

general model and method. The Knowledge Base (KB) is a good solution for source code generation 

when the input is complex because the result is related to many rules with the same input. The KB can 

be updated with any error in a result to correcting this error. The develop the model based on KB to 

generate source code from user request [16,17]. The Natural Language Processing NLP uses for source 

code generation when the input and result are subject to grammar. The  uses NLP to convert user story 

to prolog and ontology languages [18]. In this paper, a novel model for source code generation based on 

NLP and KB is proposed. The proposed model has two inputs: user story and databased schema. The 

user story is a text that describes the user requirements. The proposed model consists of three layers: 

analyzer, reasoner, and convertor. The analyzer analyzes the inputs to extract the relations of databased 

schema, sentence meaning and rules. Reasoner uses the output of analyzer to find solutions of problems 

detected in inputs. The convertor converts the solutions from reasoner to source code. The main 

achievement of the proposed model is to extract the features of inputs and taking into consideration user 

inputs. 

This paper is organized as follows: section 2 introduces a literature review; section 3 presents the 

proposed model and section 4 shows experimental results and finally section 5 is the conclusions. 

 

2. literature review 

 

In the translation of a language into other languages using the Machine Translation (MT), there are 

three approaches: Rule-Based Machine Translation (RBMT), SMT and NMT. In [5], authors use the 

Predictor Networks Based (PNB) on DL for generating source code from pseudocode. This model 

works as sentence to sentence and uses the C2W [19] model to encode the input tokens and uses the 

bidirectional LSTM (BiLSTM) to build words in the text fields. This model consists of three types of 

Predictor Networks (PN): firstly, character generation to predict character in the training data and uses 
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Softmax function to predict character in output layer.  Secondly, copy singular field to predict singular 

field; such as, a type of sentence in dataset. Thirdly, copy text field to predict the words in text field 

using RNN to achieve this object. The decoding phase uses a stack-based decoder with beam search. In 

[6], the NMT is used as sentence to tree by applying the Abstract Syntax Trees (ASTs) in source code. 

The model uses the Abstract Syntax Description Language (ASDL) [20] framework for describing data. 

The architecture of model consists of encoder and decoder. The encoder uses the BiLSTM for input 

sentence. The decoder includes four classes of modules: Firstly, the composite type modules for 

detecting the rule of sentence; such as, if statement, while, for, return, etc. This module used a feed 

forward network and SoftMax in last layer. Secondly, the constructor module updated vertical LSTM 

states of rule detect and compute the next field of rule using feed-forwards network and vertical LSTM.  

Thirdly, the constructor field module processes the children of rule detected. Fourthly, primitive type 

modules process the value of the role detect using vertical LSTM and SoftMax. In [7], authors update 

the model in [6] that uses one grammar module in decoder, APPLYRULE[r] and GENTOKE[v]. The 

APPLYRULE[r] produces the sentence rules. The GENTOKE[v] puts the value (v) in the node tree by a 

token word and uses the DNN as a connection between encoder and decoder. The authors in [8], apply 

the retrieval mechanism [21] in [7] work. The retrieval mechanism consists of four steps: firstly, 

retrieve M sentence from training dataset is the most similar to the input. Secondly, translating the 

retrieve input and extracting the n-gram action subtrees corresponding to the retrieved input. Thirdly, 

change the subtrees by replacing the words of retrieve input with corresponding input. Finally, each 

decoding changes the weights to increase the probability of subtrees. Furthermore, The MT is used to 

convert the source code to pseudocode. In [22,23], RBMT approach is used to translate source code to 

Pseudocode the RBMT and SMT are less in performance than of NMT [9,10]. Thus, the NMT is used 

with different methodology to convert the source code to pseudocode [24,25]. Therefore. Transformer 

[13, 26] is adapted in MT to convert the source code to pseudocode. In [14], the Computer Vision (CV) 

and Region Based Convolutional Neural Networks (R-CNN) are used to generate source code from 

hand draw image sketch. The CV is used to edge-merged assembling, slope filtering and noise 

removing. The R-CNN is used for detecting a GUI Object. In [15], CNN and LSTM are adapted to 

generate source code of android , iOS, and web UI from image UI sketch. In [18], authors extract 

conception model from user story and convert to prolog or ontology language by using the NLP. The 

user story is set of sentences every sentence has standard predefined format [27]. The standard format 

sentence content of tree part. Firstly, the rule: who uses the function. Secondly, the meaning: what is the 

function of the rule. Thirdly, the end: why do we use this function as it is optional. Each of the three 

parts have indicator to know the part. Figuer.1, shows an example for sentence of user story.  The "As 

a" is an indicator of role "Visitor", "I am able to" is an indicator of function " use the contact form " and 

"so that" is indicator of the last part " I can contact the administrator". 
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Figure. 1: An example of user story sentence 

There are other indicators such as "As an", "As a", "As" for role indictor , "I 'm able to", "I'm able to", 

"I am able to", "I want to", "I want to be able to", "I wish to", "I can", "I would like to" for means 

indictor and "So that", "In order to", "So", "Because of" for end indictor. 

In [16], authors proposed a design model for generating source code of web servers' data retrieval from 

user request using semantic web defined in ontology. The model depends on three components: 

specification, configuration, and template.  The specification extracts the feature from the user request. 

The template extracts the program code templates from prototype. The configuration detects and maps 

between the specification feature extracted and template. 

 

3. Proposed model  

 

The proposed model generates source code form user’s story and database schema. The proposed has 

three layers as shown in Figuer.2. The three layers are analyzer, find solution (reasoner) and convertor. 

 

 

Figure. 2: The proposed model architecture for source code generation 
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3.1. Analyzer layer  

 

The analyzer layer consists of  

- Schema 

- User requirements 

- NLP 

Schema component extracts the schema of database, and the relation between the tables of database. 

The extraction of schema by set SQL commands, then find the relation between the table by search each 

column in a table so that the column name is similar as the name of the table. Use the semantic 

similarity [28] and WordNet [29] to find the similarity between column name and table name. Figure.3 

presents the algorithm of relation extraction. 

 

  

Figure. 3: The algorithm of relation extraction 

The user requirements component extracts the roles and functions of each role from the user story by 

using the modified algorithm in [18]. The algorithm uses the WordNet [29] to identify the type of 

tokens: NOUN, PROPN, VERB, ..etc.  The indicators are used to find the role, means, and end in the 

user story sentence. there is a set for roles each new role inserts into the roles set. the means part 

explanation to detect the function name and the target of the function. Then the information about the 

means part (function name and the target of the function) is added to its role in the set of roles. the 

functions that do not have a target after explanation the means part that means this function they belong 

to the system. The end part is ignored because it is not important in generating the source code. 

Moreover, the user requirements component extracts the rules when the target of a function affects the 

table of the database, and this effect of the table is related to another table. 

 

 

 

 



6  

Anas Aloklah et al.   

3.2. Find solution layer  

 

This layer expresses the solution model as content list of solutions, list of commands and the schema. 

The solutions are extracted from executes rules which are using the backend ontology [30]. The 

backend ontology is ontology modeling the program languages, SQL and framework and content 

solutions for backend web domain. The commands extracted with same phase extract solutions. The 

commands have commend for system; such as, make file, copy file, executes function in system,…etc. 

 

3.3. Convertor layer  

 

The convertor layer converts the solution model to source code. The convertor layer consists of the 

following components: 

- Solution  

- Template 

- Configurator  

The solution component executes commands in solution model if the commend does not affect another 

solution. Moreover, move the solutions list into dictionary, then process the solution by request the 

template component for the template of solution if the solution has template. Then, send the template of 

solution to configurator to process the template. It also combines the results of the Configurator 

component. 

The template component searches for template code for solution.  Figure.4 presents the template of php 

class model. In line 2 the OPTIONAL means what in brackets is related with conditions, it means that if 

this class model of the table has a sub  table that is included in template. The * means that this optional 

may be repeated between 0 to N.  The #SubTable replaced with the class name of sub table. In line 3 the 

#Class_name replaced with the class name. In lines 6 and 8 the @ means, this is a subproblem must get 

a solution of then and replace the @problem_name by sub solution. All actions in the template are 

processed in the Configuration component. 

 

 

Figure. 4: The template of php class model 
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The configurator component processes the template of code and request of the sub solution from 

solution component and replacing the #,@ , OPTINAL tags with what is needed. Then send the source 

after ending the process of template to solution component. 

 

4. Experimental Results  

 

The proposed model is evaluated using different database schema, user stories and type of solution. This 

section presents simple case content database that has four tables, user story and the type of solution 

which is Model View Controller (MVC) architecture. The backend ontology has solution of model and 

controller. The view solution does not implement yet. Figure 5 presents the simple E-commerce 

database schema. The table in schema user, category, product, and order. Figure 6 shows an example of 

user stories. 

 

 

Figure. 5: Simple E-commerce database schema. 

 

Figure 6: an example of user stories. 
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The product related to category by foreign key “ Id_category” which means that when deleting a row 

from category, all the rows of the product have the same “id” in “Id_category”  and will be deleted. This 

action is shown in Table 1, which presents the source code of the class model category and product. 

Table 1 the result of category and product class model 

 
Category.php Product.php 

<?php 

include(Product.php) 

class Category 

{ 

  //Properties 

  public $id; 

  public $name; 

… 

⋮ 

function delete_Category($id ) 

{ 

$servername = "localhost"; 

$username = "root"; 

$password = "2w3e4r5t6y7"; 

$dbname = "eCommerce "; 

// Create connection 

$conn = new mysqli($servername, $username, 

$password, $dbname); 

// Check connection 

if ($conn->connect_error) { 

  die("Connection failed: " . $conn-

>connect_error); 

} 

$sql = "delete from Category WHERE 

`Category`.`id` = $id"; 

$product = new Product; 

$product->delete_Product_by_id_Category($id); 

$result = $conn->query($sql); 

return $result; 

} 

} 

… 

⋮ 

?> 

<?php 

include(order.php) 

class Product 

{ 

  //Properties 

  public $id; 

  public $id_ Category; 

… 

⋮ 

function delete_Product_by_id_Category  ($id_ 

Category ) 

{ 

$servername = "localhost"; 

$username = "root"; 

$password = "2w3e4r5t6y7"; 

$dbname = " eCommerce"; 

// Create connection 

$conn = new mysqli($servername, $username, 

$password, $dbname); 

// Check connection 

if ($conn->connect_error) { 

  die("Connection failed: " . $conn-

>connect_error); 

} 

$sql = "delete from Product WHERE ` Product 

`.`id_ Category ` = $id"; 

$order = new Order; 

$order ->delete_Order_by_id_Category($id); 

$result = $conn->query($sql); 

return $result; 

} 

} 

… 

⋮ 

?> 

 

Category php imports the class Product and creates object, then calls delete_Product_by_id_Category 

method to delete rows with same id. Product. php generates the delete_Product_by_id_Category 
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method. Table 2 shows the number of lines for the generated source code file. Table 3 describes the 

generated source code requirements from the source code from system. 

 

 

Table 2 number of lines code of each file generated  

 

File code  Number of lines 

User.php 314 

Category.php  151 

Product.php 206 

Order.php 214 

 

Table 3 what are the code generated and not generated of requirements 
 

Requirement  generated 

Create user class model for user table Yes 

Create product class model for user product Yes 

Create category class model for user category  Yes 

Create order class model for user order Yes 

Create add user function in user class model Yes 

Create update user function in user class model Yes 

Create delete user function in user class model Yes 

Create login and logout functions in user class model Yes 

Create change password function in user class model Yes 

Create add product function in product class model Yes 

Create update product function in product class model Yes 

Create delete product function in product class model Yes 

Create add category function in category class model Yes 

Create update category function in category class model Yes 

Create delete category function in category class model Yes 

Create add order function in order class model Yes 

Create update order function in order class model Yes 

Create delete order function in order class model Yes 

Create state of order function No 

Create Cart class  No 

Create function add and delete item into Cart  No 

Create transportation cost function  No 

Create tax cost function No 

Create total cost function No 

Create payment function No 

 

Equation 1 calculates the precent of source code generation  

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =
∑  𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡  𝑖𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑   

𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡  
× 100       (1) 
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the number of experiments is related by backend ontology which with any addition or updates in 

backend ontology.  the source code generation is tested for this update. the total of experiments more 

than 150 experiments.  

5. Conclusions and Future Work  

 

In this paper, a novel source code generation model is proposed for automatic source code generation 

from the database schema and user story. The proposed model consists of three layers: analyzer, find 

solution (reasoner) and convertor. In the analyzer layer,  database schema and user story are analyzed to 

extract relation, sentence means and rules. The find solution layer finds the solution using Backend 

Ontology and makes the solution model. The last layer converts the solution model to source code by 

the cooperation of the three components, the solution, the configurator, and the template. The proposed 

model is evaluated manually because there is not automatic method to evaluate. The result generated by 

the knowledge base, not by dataset. The experimental results are promising because the model generates 

about 70% of what we want of the source code. 
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